Câu hỏi:
13/07/2024 1,974Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có: BC2 = AB2 + AC2
= 122 + 162 = 400
⇒ BC = \[\sqrt {400} \] = 20 (cm)
Δ ABC vuông có đường cao AH:
⇒ AB2 = BH.BC
⇒ BH = \[\frac{{A{B^2}}}{{BC}}\] = \[\frac{{{{12}^2}}}{{20}}\] = 7,2 (cm)
⇒ CH = 20 – 7,2 = 12,8 (cm)
Ta có: AD là phân giác
⇒ \[\frac{{BD}}{{CD}}\] = \[\frac{{AB}}{{AC}}\]
⇒ \[\frac{{BD + CD}}{{CD}}\] = \[\frac{{AB + AC}}{{AC}}\]
⇒ \[\frac{{20}}{{CD}}\] = \[\frac{{28}}{{16}}\]
⇒ CD = \[\frac{{80}}{7}\]
⇒ HD = CH – CD
= 12,8 – \[\frac{{80}}{7}\] = \[\frac{{48}}{{35}}\] (cm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).
Câu 7:
về câu hỏi!