Câu hỏi:
11/07/2024 522
Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:
a) OM song song O'N;
b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.
Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:
a) OM song song O'N;
b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆MAN vuông tại A có:
\(\widehat {AMN} + \widehat {ANM} = 90^\circ \) (1)
Và \(\widehat {MAO} + \widehat {NAO'} = 180^\circ - \widehat {MAN} = 180^\circ - 90^\circ = 90^\circ \) (2)
Lại có:
• ∆OMA cân tại O (OA = OM = R) \( \Rightarrow \widehat {OAM} = \widehat {OMA}\) (3)
• ∆O'NA cân tại O (O'A = O'N = R') \( \Rightarrow \widehat {O'AN} = \widehat {O'NA}\) (4)
Từ (1), (2), (3) và (4) suy ra:
\[\widehat {OMN} + \widehat {MNO'}\]
\[ = \left( {\widehat {OMA} + \widehat {AMN}} \right) + \left( {\widehat {ANM} + \widehat {O'NA}} \right)\]
\[ = \widehat {OMA} + \widehat {AMN} + \widehat {ANM} + \widehat {O'NA}\]
\[ = \widehat {OAM} + \widehat {AMN} + \widehat {ANM} + \widehat {O'AN}\]
\[ = \left( {\widehat {OAM} + \widehat {O'AN}} \right) + \left( {\widehat {AMN} + \widehat {ANM}} \right)\]
\[ = 90^\circ + 90^\circ = 180^\circ \]
Tứ giác OMNO' có \[\widehat {OMN} + \widehat {MNO'} = 180^\circ \] nên OM // O'N.
b) Từ O' kẻ O'H ^ MO. Khi đó:
\({S_{OMNO'}} = \frac{{\left( {O'N + OM} \right).O'H}}{2} = \frac{{\left( {R' + R} \right).O'H}}{2}\)
\( \le \frac{{\left( {R' + R} \right).O'O}}{2} = \frac{{{{\left( {R' + R} \right)}^2}}}{2}\)
Dấu “=” xảy ra khi và chỉ khi O'H = O'O hay H ≡ O
Û O'O ^ MO hoặc O'O ^ NO'.
Vậy tứ giác MNO'O có diện tích lớn nhất là \(\frac{{{{\left( {R' + R} \right)}^2}}}{2}\) Û O'O ^ MO.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có y = x3 − 3(2m + 1)x2 + (12m + 5)x + 2
y' = 3x2 − 6(2m + 1)x + 12m + 5
Để hàm số y = x3 − 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞) thì:
y' = 3x2 − 6(2m + 1)x + 12m + 5 ≥ 0 (∀x > 2)
3x2 − 6x + 5 ≥ 12m(x − 1) (∀x > 2)
\( \Leftrightarrow \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \ge m\;\left( {\forall x > 2} \right)\)
Đặt \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \Rightarrow m \le \mathop {\min }\limits_{x > 2} g\left( x \right)\)
Ta có: \(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} > 0\;\left( {\forall x > 2} \right)\)
\( \Rightarrow g\left( x \right) > g\left( 2 \right)\;\left( {\forall x > 2} \right)\)
\( \Rightarrow m \le g\left( 2 \right) = \frac{5}{{12}}\).
Lời giải
Lời giải
A = x2 + xy + y2 − 3x − 3y
Þ 4A = 4x2 + 4xy + 4y2 − 12x − 12y
= (x2 + 4y2 + 9 + 4xy − 6x − 12y) + (3x2 − 6x + 3) − 12
= (x + 2y − 3)2 + 3(x − 1)2 − 12 ≥ −12
Þ A ≥ −3.
Vậy A đạt GTNN bằng −3 khi và chỉ khi
\(\left\{ \begin{array}{l}x + 2y - 3 = 0\\x - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right. \Leftrightarrow x = y = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.