Câu hỏi:

11/07/2024 1,263

Cho tam giác ABC có \(\widehat C = 90^\circ \). Kẻ CH vuông góc với AB. Trên AB và AC lấy tương ứng hai điểm M và N sao cho BM = BC; CN = CH. Chứng minh rằng:

a) MN ^ AC.

b) AC + BC < AB + CH.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) ∆BCM cân tại B (BM = BC)

\( \Rightarrow \widehat {BCM} = \widehat {BMC}\) (1)

∆ACB có \[\widehat C = 90^\circ \Rightarrow \widehat {BCM} + \widehat {MCN} = 90^\circ \] (2)

∆CHM vuông tại H nên \(\widehat {HCM} + \widehat {HMC} = 90^\circ \Rightarrow \widehat {HCM} + \widehat {BMC} = 90^\circ \) (3)

Từ (1), (2) và (3) suy ra \(\widehat {HCM} = \widehat {MCN}\).

∆CHN cân tại C (CH = CN) có \(\widehat {HCM} = \widehat {MCN}\) hay CM là đường phân giác nên CM cũng là đường trung trực của cạnh HN.

Þ MH = MN.

Þ ∆MHN cân tại M. Suy ra \(\widehat {MHC} = \widehat {MNH}\) (5)

∆CHN cân tại C (CH = CN).

\( \Rightarrow \widehat {CHN} = \widehat {CNH}\) (6)

Từ (5) và (6) suy ra \(\widehat {MNH} + \widehat {CNH} = \widehat {MHN} + \widehat {CHN} = \widehat {MHC} = 90^\circ \)

\( \Rightarrow \widehat {MNC} = 90^\circ \) Þ MN ^ NC hay MN ^ AC (đpcm).

b) Xét ∆MNA vuông tại N nên AN < AM (cạnh góc vuông nhỏ hơn cạnh huyền)

Þ AC − CN < AB − BM

Û AC + BM < AB + CN

Û AC + BC < AB + CH (Do BM = BC; CN = CH).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để hàm số y = x33(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞).

Xem đáp án » 13/07/2024 15,628

Câu 2:

Tìm GTNN: A = x2 + xy + y23x3y

Xem đáp án » 13/07/2024 13,945

Câu 3:

Tìm các tham số a, b, c sao cho hàm số y = ax2 + bx + c đạt GTNN là 4 tại x = 2 và đồ thị hàm số của nó cắt trục tung tại điểm có tung độ là 6.

Xem đáp án » 13/07/2024 11,892

Câu 4:

Tính chu vi và diện tích một hình tam giác vuông có một cạnh góc vuông dài 24 cm và bằng \(\frac{3}{4}\) cạnh góc vuông kia. Cạnh còn lại dài 40 cm.

Xem đáp án » 13/07/2024 10,506

Câu 5:

Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:

\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).

Xem đáp án » 13/07/2024 8,345

Câu 6:

Cho bất phương trình: (m2)x2 + 2(43m)x + 10m − 11 ≤ 0 (1). Gọi S là tập hợp các số nguyên dương m để bất phương trình đúng với mọi x < −4. Tìm số phần tử của S.

Xem đáp án » 13/07/2024 8,027

Câu 7:

Cho tam giác ABC vuông tại A, điểm M bất kỳ trên cạnh BC. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ M đến AB và AC. Tứ giác ADME là hình gì?

Xem đáp án » 13/07/2024 5,780

Bình luận


Bình luận