Cho tam giác ABC có \(\widehat C = 90^\circ \). Kẻ CH vuông góc với AB. Trên AB và AC lấy tương ứng hai điểm M và N sao cho BM = BC; CN = CH. Chứng minh rằng:
a) MN ^ AC.
b) AC + BC < AB + CH.
Cho tam giác ABC có \(\widehat C = 90^\circ \). Kẻ CH vuông góc với AB. Trên AB và AC lấy tương ứng hai điểm M và N sao cho BM = BC; CN = CH. Chứng minh rằng:
a) MN ^ AC.
b) AC + BC < AB + CH.
Quảng cáo
Trả lời:
Lời giải

a) ∆BCM cân tại B (BM = BC)
\( \Rightarrow \widehat {BCM} = \widehat {BMC}\) (1)
∆ACB có \[\widehat C = 90^\circ \Rightarrow \widehat {BCM} + \widehat {MCN} = 90^\circ \] (2)
∆CHM vuông tại H nên \(\widehat {HCM} + \widehat {HMC} = 90^\circ \Rightarrow \widehat {HCM} + \widehat {BMC} = 90^\circ \) (3)
Từ (1), (2) và (3) suy ra \(\widehat {HCM} = \widehat {MCN}\).
∆CHN cân tại C (CH = CN) có \(\widehat {HCM} = \widehat {MCN}\) hay CM là đường phân giác nên CM cũng là đường trung trực của cạnh HN.
Þ MH = MN.
Þ ∆MHN cân tại M. Suy ra \(\widehat {MHC} = \widehat {MNH}\) (5)
∆CHN cân tại C (CH = CN).
\( \Rightarrow \widehat {CHN} = \widehat {CNH}\) (6)
Từ (5) và (6) suy ra \(\widehat {MNH} + \widehat {CNH} = \widehat {MHN} + \widehat {CHN} = \widehat {MHC} = 90^\circ \)
\( \Rightarrow \widehat {MNC} = 90^\circ \) Þ MN ^ NC hay MN ^ AC (đpcm).
b) Xét ∆MNA vuông tại N nên AN < AM (cạnh góc vuông nhỏ hơn cạnh huyền)
Þ AC − CN < AB − BM
Û AC + BM < AB + CN
Û AC + BC < AB + CH (Do BM = BC; CN = CH).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có y = x3 − 3(2m + 1)x2 + (12m + 5)x + 2
y' = 3x2 − 6(2m + 1)x + 12m + 5
Để hàm số y = x3 − 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞) thì:
y' = 3x2 − 6(2m + 1)x + 12m + 5 ≥ 0 (∀x > 2)
3x2 − 6x + 5 ≥ 12m(x − 1) (∀x > 2)
\( \Leftrightarrow \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \ge m\;\left( {\forall x > 2} \right)\)
Đặt \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \Rightarrow m \le \mathop {\min }\limits_{x > 2} g\left( x \right)\)
Ta có: \(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} > 0\;\left( {\forall x > 2} \right)\)
\( \Rightarrow g\left( x \right) > g\left( 2 \right)\;\left( {\forall x > 2} \right)\)
\( \Rightarrow m \le g\left( 2 \right) = \frac{5}{{12}}\).
Lời giải
Lời giải
A = x2 + xy + y2 − 3x − 3y
Þ 4A = 4x2 + 4xy + 4y2 − 12x − 12y
= (x2 + 4y2 + 9 + 4xy − 6x − 12y) + (3x2 − 6x + 3) − 12
= (x + 2y − 3)2 + 3(x − 1)2 − 12 ≥ −12
Þ A ≥ −3.
Vậy A đạt GTNN bằng −3 khi và chỉ khi
\(\left\{ \begin{array}{l}x + 2y - 3 = 0\\x - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right. \Leftrightarrow x = y = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.