Câu hỏi:
11/07/2024 456Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
\(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + \frac{1}{{32}} + \frac{1}{{64}} + \frac{1}{{128}}\)
\( = \left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{2} - \frac{1}{4}} \right) + \left( {\frac{1}{4} - \frac{1}{8}} \right) + \left( {\frac{1}{8} - \frac{1}{{16}}} \right) + \left( {\frac{1}{{16}} - \frac{1}{{32}}} \right) + \left( {\frac{1}{{32}} - \frac{1}{{64}}} \right) + \left( {\frac{1}{{64}} - \frac{1}{{128}}} \right)\)
\[ = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{4} + \frac{1}{4} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{16}} + \frac{1}{{16}} - \frac{1}{{32}} + \frac{1}{{32}} - \frac{1}{{64}} + \frac{1}{{64}} - \frac{1}{{128}}\]
\[ = 1 - \frac{1}{{128}} = \frac{{127}}{{128}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).
Câu 7:
về câu hỏi!