Câu hỏi:
13/07/2024 2,457Cho hình chữ nhật ABCD, vẽ BH vuông góc AC tại H, tia BH cắt CD tại I và cắt đường thẳng AD tại K. Chứng minh:
a) AC . AH = BH . BK.
b) BH2 = HI . HK.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Áp dụng hệ thức lượng trong tam giác vuông vào ∆ABC vuông tại B có BH là đường cao.
Þ AH.AC = AB2 (1)
Áp dụng hệ thức lượng trong tam giác vuông vào ∆ABK vuông tại A có AH là đường cao.
Þ BH.BK = AB2 (2)
Từ (1) và (2) suy ra AC.AH = BH.BK (đpcm)
b) ABCD là hình chữ nhật suy ra AB // CD hay AB // CI.
Áp dụng định lí Ta lét, ta có: \(\frac{{AH}}{{HC}} = \frac{{BH}}{{HI}}\) (3)
ABCD là hình chữ nhật suy ra AD // BC hay AK // BC.
Áp dụng định lí Ta lét, ta có: \(\frac{{AH}}{{HC}} = \frac{{KH}}{{HB}}\) (4)
Từ (3) và (4) suy ra \(\frac{{BH}}{{HI}} = \frac{{KH}}{{HB}} \Rightarrow B{H^2} = HI\,.\,HK\) (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).
Câu 7:
về câu hỏi!