Câu hỏi:

20/03/2023 1,826

Cho a, b, c là 3 cạnh của tam giác ABC thỏa mãn a3 + b3 + c3 = 3abc.

Chứng minh rằng: Tam giác ABC là tam giác đều.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có: a3 + b3 + c3 = 3abc

Û a3 + b3 + c33abc = 0

Û a3 + 3a2b + 3ab2 + b3 − (3a2b + 3ab2) + c33abc = 0

Û (a + b)3 + c3 − 3ab(a + b + c) = 0

Û (a + b + c)[(a + b)2 − (a + b).c + c2] − 3ab(a + b + c) = 0

Û (a + b + c)[a2 + b2 + 2ab − ac − bc + c2] − 3ab(a + b + c) = 0

Û (a + b + c)[a2 + b2 + 2ab − ac − bc + c2 − 3ab] = 0

Û (a + b + c)[a2 + b2 + c2 − ab − bc − ca] = 0          (*)

a, b, c là ba cạnh của một tam giác nên a + b + c > 0.

Phương trình (*) trở thành:

a2 + b2 + c2 − ab − bc − ca = 0

Û 2a2 + 2b2 + 2c2 − 2ab − 2bc − 2ca = 0

Û (a2 − 2ab + b2) + (b2 − 2bc + c2) + (c2 − 2ca + a2) = 0

Û (a − b)2 + (b − c)2 + (c − a)2 = 0

Vì (a − b)2; (b − c)2; (c − a)2 ≥ 0 nên

(a − b)2 + (b − c)2 + (c − a)2 = 0

\( \Leftrightarrow \left\{ \begin{array}{l}a - b = 0\\b - c = 0\\c - a = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = b\\b = c\\c = a\end{array} \right. \Leftrightarrow a = b = c\).

Vậy ABC là tam giác đều.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để hàm số y = x33(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞).

Xem đáp án » 13/07/2024 17,039

Câu 2:

Tìm GTNN: A = x2 + xy + y23x3y

Xem đáp án » 13/07/2024 15,663

Câu 3:

Tìm các tham số a, b, c sao cho hàm số y = ax2 + bx + c đạt GTNN là 4 tại x = 2 và đồ thị hàm số của nó cắt trục tung tại điểm có tung độ là 6.

Xem đáp án » 13/07/2024 13,621

Câu 4:

Tính chu vi và diện tích một hình tam giác vuông có một cạnh góc vuông dài 24 cm và bằng \(\frac{3}{4}\) cạnh góc vuông kia. Cạnh còn lại dài 40 cm.

Xem đáp án » 13/07/2024 11,910

Câu 5:

Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:

\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).

Xem đáp án » 13/07/2024 10,518

Câu 6:

Cho bất phương trình: (m2)x2 + 2(43m)x + 10m − 11 ≤ 0 (1). Gọi S là tập hợp các số nguyên dương m để bất phương trình đúng với mọi x < −4. Tìm số phần tử của S.

Xem đáp án » 13/07/2024 9,449

Câu 7:

Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB AC (B và C là hai tiếp điểm). Kẻ đường kính CD của đường tròn (O).

a) Chứng minh OA BC.

b) Chứng minh: BD // OA.

c) Kẻ BH CD. Gọi K là giao điểm của BH và AD. Chứng minh K là trung điểm của BH.

Xem đáp án » 13/07/2024 6,551