Câu hỏi:

13/07/2024 1,360

Cho tam giác ABC thỏa \(\frac{{{a^3} + {b^3} + {c^3}}}{{abc}} + \frac{{2r}}{R} = 4\). Chứng minh rằng: Tam giác ABC là tam giác đều.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có:

\(S = \frac{{abc}}{{4R}} = pr = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)

\( \Rightarrow {S^2} = \frac{{abcpr}}{{4R}} = p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)\)

\( \Rightarrow \frac{{2r}}{R} = \frac{{\left( {a + b + c - 2a} \right)\left( {a + b + c - 2b} \right)\left( {a + b + c - 2c} \right)}}{{abc}}\).

Lại có theo giả thiết: \(\frac{{{a^3} + {b^3} + {c^3}}}{{abc}} + \frac{{2r}}{R} = 4\) nên suy ra

\(\frac{{{a^3} + {b^3} + {c^3}}}{{abc}} + \frac{{\left( {a + b + c - 2a} \right)\left( {a + b + c - 2b} \right)\left( {a + b + c - 2c} \right)}}{{abc}} = 4\)

\( \Leftrightarrow \frac{{{a^3} + {b^3} + {c^3}}}{{abc}} + \frac{{\left( {b + c - a} \right)\left( {a + c - b} \right)\left( {a + b - c} \right)}}{{abc}} = 4\)

\( \Leftrightarrow \frac{{{a^3} + {b^3} + {c^3} + \left( {b + c - a} \right)\left( {a + c - b} \right)\left( {a + b - c} \right)}}{{abc}} = 4\)

\( \Leftrightarrow \frac{{{a^3} + {b^3} + {c^3} - {a^3} - {b^3} - {c^3} + {a^2}b + a{b^2} + {b^2}c + b{c^2} + {a^2}c + a{c^2} - 2abc}}{{abc}} = 4\)

\( \Leftrightarrow \frac{{{a^2}b + a{b^2} + {b^2}c + b{c^2} + {a^2}c + a{c^2} - 2abc}}{{abc}} = 4\)

\( \Leftrightarrow {a^2}b + a{b^2} + {b^2}c + b{c^2} + {a^2}c + a{c^2} - 2abc = 4abc\)

\( \Leftrightarrow {a^2}b + a{b^2} + {b^2}c + b{c^2} + {a^2}c + a{c^2} = 6abc\) (1)

Áp dụng BĐT AM-GM, ta có:

\({a^2}b + a{b^2} + {b^2}c + b{c^2} + {a^2}c + a{c^2} \ge 6abc\).

Do đó (1) đúng khi và chỉ khi a = b = c.

Vậy tam giác ABC đều.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để hàm số y = x33(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞).

Xem đáp án » 02/04/2025 17,970

Câu 2:

Tìm GTNN: A = x2 + xy + y23x3y

Xem đáp án » 13/07/2024 16,487

Câu 3:

Tìm các tham số a, b, c sao cho hàm số y = ax2 + bx + c đạt GTNN là 4 tại x = 2 và đồ thị hàm số của nó cắt trục tung tại điểm có tung độ là 6.

Xem đáp án » 13/07/2024 14,878

Câu 4:

Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:

\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).

Xem đáp án » 13/07/2024 12,485

Câu 5:

Tính chu vi và diện tích một hình tam giác vuông có một cạnh góc vuông dài 24 cm và bằng \(\frac{3}{4}\) cạnh góc vuông kia. Cạnh còn lại dài 40 cm.

Xem đáp án » 13/07/2024 12,444

Câu 6:

Cho bất phương trình: (m2)x2 + 2(43m)x + 10m − 11 ≤ 0 (1). Gọi S là tập hợp các số nguyên dương m để bất phương trình đúng với mọi x < −4. Tìm số phần tử của S.

Xem đáp án » 13/07/2024 9,770

Câu 7:

Tìm điều kiện của tham số để đồ thị hàm số y = (m − 2)x + m tạo với trục Ox một góc nhọn, góc tù.

Xem đáp án » 13/07/2024 8,107
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay