Câu hỏi:

11/07/2024 2,557

Từ điểm A ở ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).

a) Chứng minh rằng OA ^ BC.

b) Vẽ đường kính CD. Chứng minh rằng BD // AO.

c) Tính độ dài các cạnh của tam giác ABC biết OB = 2 cm, OA = 4 cm.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có:

• AB = AC (tính chất hai tiếp tuyến cắt nhau);

• OB = OC (= R).

Þ OA là trung trực của đoạn thẳng BC nên OA ^ BC (1)

b) Vì ∆BCD có cạnh CD là đường kính của đường tròn ngoại tiếp nên ∆BCD vuông tại B hay BC ^ BD (2)

Từ (1) và (2) suy ra OA // BD.

c) Do AB tiếp xúc với (O) tại B nên AB ^ BO

Þ ∆ABO vuông tại B có cạnh huyền AO = 2BO = 4 cm

\( \Rightarrow \widehat A = 30^\circ \), do đó \(\widehat {BAC} = 60^\circ \).

Suy ra ∆ABC là tam giác đều đồng thời \(\widehat {BOA} = 60^\circ \).

Trong ∆ABO vuông tại B có cạnh AB đối diện với góc 60° nên:

\(\sin 60^\circ = \frac{{AB}}{{AO}} \Leftrightarrow AB = AO\,.\,\sin 60^\circ = 4\,.\,\frac{{\sqrt 3 }}{2} = 2\sqrt 3 \,\;\left( {cm} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để hàm số y = x33(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞).

Xem đáp án » 13/07/2024 16,012

Câu 2:

Tìm GTNN: A = x2 + xy + y23x3y

Xem đáp án » 13/07/2024 14,567

Câu 3:

Tìm các tham số a, b, c sao cho hàm số y = ax2 + bx + c đạt GTNN là 4 tại x = 2 và đồ thị hàm số của nó cắt trục tung tại điểm có tung độ là 6.

Xem đáp án » 13/07/2024 12,839

Câu 4:

Tính chu vi và diện tích một hình tam giác vuông có một cạnh góc vuông dài 24 cm và bằng \(\frac{3}{4}\) cạnh góc vuông kia. Cạnh còn lại dài 40 cm.

Xem đáp án » 13/07/2024 11,271

Câu 5:

Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:

\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).

Xem đáp án » 13/07/2024 9,104

Câu 6:

Cho bất phương trình: (m2)x2 + 2(43m)x + 10m − 11 ≤ 0 (1). Gọi S là tập hợp các số nguyên dương m để bất phương trình đúng với mọi x < −4. Tìm số phần tử của S.

Xem đáp án » 13/07/2024 8,716

Câu 7:

Cho tam giác ABC vuông tại A, điểm M bất kỳ trên cạnh BC. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ M đến AB và AC. Tứ giác ADME là hình gì?

Xem đáp án » 13/07/2024 5,855

Bình luận


Bình luận