Câu hỏi:

13/07/2024 2,546

Cho hình chóp đều S.ABCD. Gọi M, N lần lượt là trung điểm của SB, SD. Mặt phẳng (AMN) cắt SC tại E. Tính \(\frac{{{V_{S.AMEN}}}}{{{V_{S.ABCD}}}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Gọi O là tâm đáy và P là trung điểm của MN.

Suy ra I cũng là trung điểm của SO (theo định lí Ta-lét).

Trong tam giác SAC, nối AP cắt SC tại E.

Áp dụng Menelaus cho tam giác SPC có ba điểm thẳng hàng là A, P, E ta có:

\(\frac{{SE}}{{EC}}.\frac{{CA}}{{AO}}.\frac{{OP}}{{SP}} = 1 \Leftrightarrow \frac{{SE}}{{EC}}\,.\,2\,.\,1 = 1\)

\( \Leftrightarrow SE = \frac{1}{2}EC \Leftrightarrow SE = \frac{1}{3}SC\).

Do S.ABCD là chóp đều \( \Rightarrow \left\{ \begin{array}{l}{V_{S.AMEN}} = 2{V_{S.ANE}}\\{V_{S.ABCD}} = 2{V_{S.ACD}}\end{array} \right.\)

\( \Rightarrow \frac{{{V_{S.AMEN}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.ANE}}}}{{{V_{S.ACD}}}} = \frac{{SA}}{{SA}}.\frac{{SN}}{{SD}}.\frac{{SE}}{{SC}} = 1.\frac{1}{2}.\frac{1}{3} = \frac{1}{6}\) (Theo định lí Simsons).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có y = x33(2m + 1)x2 + (12m + 5)x + 2

 y' = 3x26(2m + 1)x + 12m + 5

Để hàm số y = x33(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞) thì:

y' = 3x26(2m + 1)x + 12m + 5 ≥ 0 (x > 2)

 3x26x + 5 ≥ 12m(x − 1) (x > 2)

\( \Leftrightarrow \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \ge m\;\left( {\forall x > 2} \right)\)

Đặt \(g\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{12\left( {x - 1} \right)}} \Rightarrow m \le \mathop {\min }\limits_{x > 2} g\left( x \right)\)

Ta có: \(g'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{12{{\left( {x - 1} \right)}^2}}} > 0\;\left( {\forall x > 2} \right)\)

\( \Rightarrow g\left( x \right) > g\left( 2 \right)\;\left( {\forall x > 2} \right)\)

\( \Rightarrow m \le g\left( 2 \right) = \frac{5}{{12}}\).

Lời giải

Lời giải

A = x2 + xy + y23x3y

Þ 4A = 4x2 + 4xy + 4y212x12y

= (x2 + 4y2 + 9 + 4xy − 6x12y) + (3x2 − 6x + 3) − 12

= (x + 2y − 3)2 + 3(x − 1)2 − 12 ≥ −12

Þ A ≥ −3.

Vậy A đạt GTNN bằng −3 khi và chỉ khi

\(\left\{ \begin{array}{l}x + 2y - 3 = 0\\x - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right. \Leftrightarrow x = y = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP