Câu hỏi:

12/07/2024 2,641

Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a; \(SA = a\sqrt 3 \); SA ^ (ABCD). Gọi M, N lần lượt là trung điểm của SB; SD, mặt phẳng (AMN) cắt SC tại I. Tính thể tích của khối đa diện ABCDMIN

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack 

Gọi O là tâm hình vuông.

SO cắt MN tại K Þ I là giao điểm của AK với SC.

Vì MN là đường trung bình của tam giác SBD nên K là trung điểm của SO.

Gọi A' là điểm đối xứng của A qua S, H là giao điểm của AK và SC.

Vì SO // A'C và K là trung điểm của SO

Þ H là trung điểm của A'C

Þ I là trọng tâm của tam giác AA'C

\( \Rightarrow SI = \frac{1}{3}SC\)

Ta có:

\({V_{S.ABCD}} = \frac{1}{3}SA.{S_{ABCD}} = \frac{{{a^3}\sqrt 3 }}{3}\);

\({V_{S.ABD}} = {V_{S.}}_{BCD} = \frac{1}{2}{V_{S.}}_{ABCD}\).

Khi đó: \({V_{S.AMIN}} = {V_{S.AMN}} + {V_{S.MIN}}\)

\( = \frac{1}{1}.\frac{1}{2}.\frac{1}{2}.{V_{S.ABD}} + \frac{1}{2}.\frac{1}{2}.\frac{1}{3}.{V_{S.BCD}}\)

\( = \frac{1}{4}{V_{S.ABD}} + \frac{1}{{12}}{V_{S.BCD}} = \left( {\frac{1}{4} + \frac{1}{{12}}} \right).\frac{1}{2}{V_{S.ABCD}} = \frac{1}{6}{V_{S.ABCD}}\).

Do đó: \({V_{ABCDMIN}} = {V_{S.ABCD}} - {V_{S.AMIN}} = \frac{5}{6}{V_{S.ABCD}} = \frac{{5{a^3}\sqrt 3 }}{{18}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để hàm số y = x33(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞).

Xem đáp án » 13/07/2024 15,628

Câu 2:

Tìm GTNN: A = x2 + xy + y23x3y

Xem đáp án » 13/07/2024 13,945

Câu 3:

Tìm các tham số a, b, c sao cho hàm số y = ax2 + bx + c đạt GTNN là 4 tại x = 2 và đồ thị hàm số của nó cắt trục tung tại điểm có tung độ là 6.

Xem đáp án » 13/07/2024 11,892

Câu 4:

Tính chu vi và diện tích một hình tam giác vuông có một cạnh góc vuông dài 24 cm và bằng \(\frac{3}{4}\) cạnh góc vuông kia. Cạnh còn lại dài 40 cm.

Xem đáp án » 13/07/2024 10,506

Câu 5:

Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng:

\(\frac{{a + bc}}{{b + c}} + \frac{{b + ca}}{{c + a}} + \frac{{c + ab}}{{a + b}} \ge 2\).

Xem đáp án » 13/07/2024 8,345

Câu 6:

Cho bất phương trình: (m2)x2 + 2(43m)x + 10m − 11 ≤ 0 (1). Gọi S là tập hợp các số nguyên dương m để bất phương trình đúng với mọi x < −4. Tìm số phần tử của S.

Xem đáp án » 13/07/2024 8,027

Câu 7:

Cho tam giác ABC vuông tại A, điểm M bất kỳ trên cạnh BC. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ M đến AB và AC. Tứ giác ADME là hình gì?

Xem đáp án » 13/07/2024 5,780

Bình luận


Bình luận