Câu hỏi:

13/07/2024 8,006

Cho hình bình hành ABCD có AB > BC. Đường phân giác của góc D cắt AB tại M, đường phân giác của góc B cắt CD tại N.                                                                               
a)
Chứng minh: AM = CN.    

b) Chứng minh: tứ giác DMBN là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì ABCD là hình bình hành nên AB // CD

Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{D}}C}\) (Hai góc so le trong) và AB = CD, AD = BC     (1)

Vì DM là tia phân giác của góc ADC \(\widehat {ADM} = \widehat {MDC} = \frac{1}{2}\widehat {CDA}\)

Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{DA}}}\)

Do đó tam giác ADM cân tại A

Suy ra AM = AD (tính chất)                           (2)

Vì BN là tia phân giác của góc ABC \(\widehat {ABN} = \widehat {NBC} = \frac{1}{2}\widehat {ABC}\)

ABCD là hình bình hành nên AB // CD nên \(\widehat {ABN} = \widehat {BNC}\) (Hai góc so le trong)

Suy ra \(\widehat {CBN} = \widehat {BNC}\)

Do đó tam giác BCN cân tại C

Suy ra CN = CB (tính chất)                  (3)

Từ (1), (2) và (3) suy ra AM = CN           

Vậy AM = CN           

b) Ta có:

AB = AM + MB

CD = CN + ND

Mà AB = CD, AM = CN (chứng minh câu a)

Suy ra MB = ND

Tứ giác DMBN có:

MB = ND (chứng minh trên)

MB // ND (vì AB // CD)

Suy ra DMBN là hình bình hành

Vậy DMBN là hình bình hành.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Xét ∆ABH và ∆CBA có:

\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)

\(\widehat {ABC}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)

Do đó AB2 = BH . BC.

b) Vì tam giác AHC vuông tại H nên  \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)

\(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)

Suy ra \(\widehat {BAH} = \widehat {HCA}\)

Xét ∆AHB và ∆CHA có:

\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)

\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)

Do đó  (g.g)

Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)

Do đó AH2 = BH . CH.

c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]

Suy ra AB . AC = AH . BC.

d) Xét ∆CAH và ∆CBA có:

\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).

\(\widehat {ACB}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)

Do đó AC2 = CH . BC.

Lời giải

Lời giải

a) Ta có:

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \)

= \(\overrightarrow {EA} + \overrightarrow {AB} + \overrightarrow {CD} \)

= \(\overrightarrow {EB} + \overrightarrow {CD} \)

= \(\overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)

= \(\overrightarrow {ED} + \overrightarrow {CB} + (\overrightarrow {BD} + \overrightarrow {DB} )\)

= \(\overrightarrow {CB} + \overrightarrow {ED} \)

Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \)

b) Ta có:

\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \)

= \(\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {CE} \)

= \(\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {CD} \)

= \(\overrightarrow {AE} + \overrightarrow {CD} \)

= \(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {BD} \)

= \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \)

Vậy \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay