Câu hỏi:
13/07/2024 6,706Cho hình bình hành ABCD có AB > BC. Đường phân giác của góc D cắt AB tại M, đường phân giác của góc B cắt CD tại N.
a) Chứng minh: AM = CN.
b) Chứng minh: tứ giác DMBN là hình bình hành.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Vì ABCD là hình bình hành nên AB // CD
Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{D}}C}\) (Hai góc so le trong) và AB = CD, AD = BC (1)
Vì DM là tia phân giác của góc ADC ⇒ \(\widehat {ADM} = \widehat {MDC} = \frac{1}{2}\widehat {CDA}\)
Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{DA}}}\)
Do đó tam giác ADM cân tại A
Suy ra AM = AD (tính chất) (2)
Vì BN là tia phân giác của góc ABC ⇒ \(\widehat {ABN} = \widehat {NBC} = \frac{1}{2}\widehat {ABC}\)
Vì ABCD là hình bình hành nên AB // CD nên \(\widehat {ABN} = \widehat {BNC}\) (Hai góc so le trong)
Suy ra \(\widehat {CBN} = \widehat {BNC}\)
Do đó tam giác BCN cân tại C
Suy ra CN = CB (tính chất) (3)
Từ (1), (2) và (3) suy ra AM = CN
Vậy AM = CN
b) Ta có:
AB = AM + MB
CD = CN + ND
Mà AB = CD, AM = CN (chứng minh câu a)
Suy ra MB = ND
Tứ giác DMBN có:
MB = ND (chứng minh trên)
MB // ND (vì AB // CD)
Suy ra DMBN là hình bình hành
Vậy DMBN là hình bình hành.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) AB2 = BH . BC;
b) AH2 = BH . HC;
c) AB . AC = AH . BC;
d) AC2 = CH . BC.
Câu 2:
Cho 5 điểm A, B, C, D, E. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).
b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Câu 3:
Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.
b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.
Câu 4:
Câu 5:
Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:
a) Ít nhất 2 bóng tốt.
b) Ít nhất 1 bóng tốt.
Câu 6:
Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.
Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
về câu hỏi!