Câu hỏi:
13/07/2024 1,913Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) Vì ABCD là hình bình hành nên AB // CD
Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{D}}C}\) (Hai góc so le trong) và AB = CD, AD = BC (1)
Vì DM là tia phân giác của góc ADC ⇒ \(\widehat {ADM} = \widehat {MDC} = \frac{1}{2}\widehat {CDA}\)
Suy ra \(\widehat {AM{\rm{D}}} = \widehat {M{\rm{DA}}}\)
Do đó tam giác ADM cân tại A
Suy ra AM = AD (tính chất) (2)
Vì BN là tia phân giác của góc ABC ⇒ \(\widehat {ABN} = \widehat {NBC} = \frac{1}{2}\widehat {ABC}\)
Vì ABCD là hình bình hành nên AB // CD nên \(\widehat {ABN} = \widehat {BNC}\) (Hai góc so le trong)
Suy ra \(\widehat {CBN} = \widehat {BNC}\)
Do đó tam giác BCN cân tại C
Suy ra CN = CB (tính chất) (3)
Từ (1), (2) và (3) suy ra AM = CN
Vậy AM = CN
b) Ta có:
AB = AM + MB
CD = CN + ND
Mà AB = CD, AM = CN (chứng minh câu a)
Suy ra MB = ND
Tứ giác DMBN có:
MB = ND (chứng minh trên)
MB // ND (vì AB // CD)
Suy ra DMBN là hình bình hành
Vậy DMBN là hình bình hành.
c) Vì DMBN là hình bình hành nên DM // BN, DM = BN
Ta có DM // BN, NK ⊥ DM
Nên NK ⊥ BN (quan hệ từ vuông góc đến song song)
Suy ra \(\widehat {KNH} = 90^\circ \)
Vì DM // BN, MH ⊥ BN
Nên DM ⊥ MH (quan hệ từ vuông góc đến song song)
Suy ra \(\widehat {HMK} = 90^\circ \)
Vì H,K lần lượt là hình chiếu M và N trên BN và DM
Nên \(\widehat {MKN} = 90^\circ ,\widehat {MHN} = 90^\circ \)
Xét tứ giác MHNK có
\(\widehat {MKN} = 90^\circ ,\widehat {MHN} = 90^\circ \), \(\widehat {KNH} = 90^\circ \), \(\widehat {HMK} = 90^\circ \) (chứng minh trên)
Suy ra MHNK là hình chữ nhật
Vậy MHNK là hình chữ nhật.
d)Vì ABCD là hình bình hành nên AC và BD cắt nhau tại trung điểm của mỗi đường
Gọi O là trung điểm của AC (*)
Suy ra O là trung điểm của BD
Vì DMBN là hình bình hành nên MN và BD cắt nhau tại trung điểm của mỗi đường
Mà O là trung điểm của BD
Suy ra O là trung điểm của MN (**)
Vì MHNK là hình chữ nhật nên MN và HK cắt nhau tại trung điểm của mỗi đường
Mà O là trung điểm của MN
Suy ra O là trung điểm của HK (***)
Từ (*), (**) và (***) suy ra ba đường thẳng AC, MN, KH đồng quy tại điểm O
Vậy ba đường thẳng AC, MN, KH đồng quy.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) AB2 = BH . BC;
b) AH2 = BH . HC;
c) AB . AC = AH . BC;
d) AC2 = CH . BC.
Câu 2:
Cho 5 điểm A, B, C, D, E. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).
b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Câu 3:
Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.
b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.
Câu 4:
Cho đường tròn (O; R), đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng d ở M và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với MP cắt đường thẳng (d’) ở N.
a) Chứng minh OM = OP và tam giác NMP cân
b) Kẻ OI vuông góc MN. Chứng minh MN là tiếp tuyến của đường tròn (O) tại I
c) Chứng minh AM . BN = R2
d) Tìm vị trí của M để diện tích tứ giác AMNB nhỏ nhất.
Câu 5:
Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.
Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
Câu 6:
Câu 7:
Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:
a) Ít nhất 2 bóng tốt.
b) Ít nhất 1 bóng tốt.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
về câu hỏi!