Câu hỏi:
13/07/2024 7,230
Cho a, b, c đôi một khác nhau thỏa mãn \(\frac{{a + b}}{c} = \frac{{b + c}}{a} = \frac{{c + a}}{b}\)
Tính giá trị của biểu thức \(P = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right)\).
Cho a, b, c đôi một khác nhau thỏa mãn \(\frac{{a + b}}{c} = \frac{{b + c}}{a} = \frac{{c + a}}{b}\)
Tính giá trị của biểu thức \(P = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right)\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{{a + b}}{c} = \frac{{b + c}}{a} = \frac{{c + a}}{b} = \frac{{a + b + b + c + c + a}}{{c + a + b}} = \frac{{2(a + b + c)}}{{(a + b + c)}} = 2\)
\( \Rightarrow \left\{ \begin{array}{l}a + b = 2c\\b + c = 2{\rm{a}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\b + c = 2{\rm{a}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\b + c = 2(2c - b)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\b + c = 4c - 2b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\3b = 3c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2c - b\\b = c\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = 2c - c\\b = c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = c\\b = c\end{array} \right. \Leftrightarrow a = b = c\)
Khi đó P = (1 + 1). (1 + 1). (1 + 1) = 2. 2. 2 = 8
Vậy P = 8.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Xét ∆ABH và ∆CBA có:
\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)
\(\widehat {ABC}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)
Do đó AB2 = BH . BC.
b) Vì tam giác AHC vuông tại H nên \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)
Suy ra \(\widehat {BAH} = \widehat {HCA}\)
Xét ∆AHB và ∆CHA có:
\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)
\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)
Do đó (g.g)
Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)
Do đó AH2 = BH . CH.
c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]
Suy ra AB . AC = AH . BC.
d) Xét ∆CAH và ∆CBA có:
\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).
\(\widehat {ACB}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)
Do đó AC2 = CH . BC.
Lời giải
Lời giải
Ta có n(Ω) = \({\rm{C}}_{12}^3\) = 220
a) Gọi biến cố A: “ trong 3 bóng lấy ra có ít nhất 2 bóng tốt ”
+) Trong 3 bóng có 2 bóng tốt, 1 bóng không tốt: \({\rm{C}}_5^1.{\rm{C}}_7^2\)
+) Trong 3 bóng có 3 bóng tốt: \({\rm{C}}_7^3\)
Suy ra n(A) = \({\rm{C}}_5^1.{\rm{C}}_7^2\) + \({\rm{C}}_7^3\) = 140
Vậy xác suất để lấy được ít nhất 2 bóng tốt là \(P\left( A \right) = \frac{{140}}{{220}} = \frac{7}{{11}}\).
b) Gọi biến cố B: “ trong 3 bóng lấy ra có ít nhất 1 bóng tốt ”
Gọi \(\overline {\rm{B}} \) là biến có đối của biến cố B: “ trong 3 bóng lấy ra đều là bóng không tốt ”
Nên \({\rm{n}}\left( {\overline B } \right){\rm{ = }}\,{\rm{C}}_5^3 = 10\)
Suy ra \(P\left( {\overline B } \right) = \frac{{10}}{{220}} = \frac{1}{{22}}\).
Vậy xác suất để lấy được ít nhất 1 bóng tốt là: \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{{22}} = \frac{{21}}{{22}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.