Câu hỏi:
13/07/2024 1,514Cho hình thang vuông ABCD có \(\widehat A = \widehat D = 90^\circ \), \[AB = AD = \frac{1}{2}CD\]. Gọi E là trung điểm của CD. M là giao điểm của AC và BE, K là giao điểm của AE và DM. Kẻ DH vuông góc với AC, cắt AE ở I.
a) Tứ giác ABCE là hình gì?
b) Tứ giác ABED là hình gì?
c) Tứ giác BIDK là hình gì?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) Vì E là trung điểm của CD (giả thiết)
Nên \[CE = ED = \frac{1}{2}\;CD\]
Mà \[AB = AD = \frac{1}{2}CD\] (giả thiết)
Suy ra AB = AD = CE = ED
Vì ABCD là hình thang vuông (giả thiết)
Nên AB // CD
Xét tứ giác ABCE có AB // CE, AB = CE (chứng minh trên)
Suy ra ABCE là hình bình hành
b) Xét tứ giác ABED có AB // DE, AB = DE (chứng minh câu a)
Suy ra ABED là hình bình hành
Mà \(\widehat A = \widehat D = 90^\circ \), AB = AD (giả thiết)
Do đó ABED là hình vuông
c) Gọi O là giao điểm của AE và BD
Vì ABED là hình vuông
Suy ra OE = OA = OD = OB, BD ⊥ AE , \(\widehat {ABM} = \widehat {DEM} = 90^\circ \)
Xét hình bình hành ABCE có AC cắt BE tại M
Suy ra M là trung điểm của AC và BE
Hay BM = ME
Xét tam giác ABM và tam giác DEM có
\(\widehat {ABM} = \widehat {DEM} = 90^\circ \) (chứng minh trên)
AB = DE (chứng minh câu a)
BM = ME (chứng minh trên)
Do đó DABM = DDEM (c.g.c)
Suy ra \(\widehat {BAM} = \widehat {EDM}\) (hai góc tương ứng)
Xét DAHD vuông tại H có \(\widehat {HA{\rm{D}}} + \widehat {H{\rm{D}}A} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {HA{\rm{D}}} + \widehat {HAB} = \widehat {DAB} = 90^\circ \)
Suy ra \(\widehat {HAB} = \widehat {H{\rm{D}}A}\)
Lại có \(\widehat {BAH} = \widehat {EDM}\) (chứng minh trên)
Suy ra \(\widehat {HDA} = \widehat {EDM}\)
Xét tam giác ADE có \(\widehat {ADE} = 90^\circ \), AD = DE
Nên tam giác ADE vuông cân tại D
Suy ra \(\widehat {DAE} = \widehat {DE{\rm{A}}} = \frac{{90^\circ }}{2} = 45^\circ \)
Xét tam giác AID và tam giác EKD có
\(\widehat {DAE} = \widehat {DE{\rm{A}}}\) (chứng minh trên)
AD = DE (chứng minh câu a)
\(\widehat {IDA} = \widehat {EDK}\) (chứng minh trên)
Do đó △AID = △EKD (g.c.g)
Suy ra DI = KD, AI = EK (các cặp cạnh tương ứng)
Ta có OA = OI + IA, OE = OK + KE
Mà OA = OE, AI = EK (chứng minh trên)
Suy ra OI = OK
Xét tứ giác BIDK có BD cắt IK tại O
Mà OI = OK, OB = OD (chứng minh trên)
Suy ra BIDK là hình bình hành
Lại có DI = DK (chứng minh trên)
Do đó BIDK là hình thoi.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) AB2 = BH . BC;
b) AH2 = BH . HC;
c) AB . AC = AH . BC;
d) AC2 = CH . BC.
Câu 2:
Cho 5 điểm A, B, C, D, E. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).
b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Câu 3:
Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.
b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.
Câu 4:
Cho đường tròn (O; R), đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng d ở M và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với MP cắt đường thẳng (d’) ở N.
a) Chứng minh OM = OP và tam giác NMP cân
b) Kẻ OI vuông góc MN. Chứng minh MN là tiếp tuyến của đường tròn (O) tại I
c) Chứng minh AM . BN = R2
d) Tìm vị trí của M để diện tích tứ giác AMNB nhỏ nhất.
Câu 5:
Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.
Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
Câu 6:
Câu 7:
Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:
a) Ít nhất 2 bóng tốt.
b) Ít nhất 1 bóng tốt.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
về câu hỏi!