Câu hỏi:

13/07/2024 1,771

Cho hình thang vuông ABCD có \(\widehat A = \widehat D = 90^\circ \), \[AB = AD = \frac{1}{2}CD\]. Gọi E là trung điểm của CD. M là giao điểm của AC và BE, K là giao điểm của AE và DM. Kẻ DH vuông góc với AC, cắt AE ở I.

a) Tứ giác ABCE là hình gì?

b) Tứ giác ABED là hình gì?

c) Tứ giác BIDK là hình gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì E là trung điểm của CD (giả thiết)

Nên \[CE = ED = \frac{1}{2}\;CD\]

Mà \[AB = AD = \frac{1}{2}CD\] (giả thiết)

Suy ra AB = AD = CE = ED

Vì ABCD là hình thang vuông (giả thiết)

Nên AB // CD

Xét tứ giác ABCE có AB // CE, AB = CE (chứng minh trên)

Suy ra ABCE là hình bình hành

b) Xét tứ giác ABED có AB // DE, AB = DE (chứng minh câu a)

Suy ra ABED là hình bình hành

Mà \(\widehat A = \widehat D = 90^\circ \), AB = AD (giả thiết)

Do đó ABED là hình vuông

c) Gọi O là giao điểm của AE và BD

Vì ABED là hình vuông

Suy ra OE = OA = OD = OB, BD AE , \(\widehat {ABM} = \widehat {DEM} = 90^\circ \)

Xét hình bình hành ABCE có AC cắt BE tại M

Suy ra M là trung điểm của AC và BE

Hay BM = ME

Xét tam giác ABM và tam giác DEM có

\(\widehat {ABM} = \widehat {DEM} = 90^\circ \) (chứng minh trên)

AB = DE (chứng minh câu a)

BM = ME (chứng minh trên)

Do đó DABM = DDEM (c.g.c)

Suy ra \(\widehat {BAM} = \widehat {EDM}\) (hai góc tương ứng)

Xét DAHD vuông tại H có \(\widehat {HA{\rm{D}}} + \widehat {H{\rm{D}}A} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Mà \(\widehat {HA{\rm{D}}} + \widehat {HAB} = \widehat {DAB} = 90^\circ \)

Suy ra \(\widehat {HAB} = \widehat {H{\rm{D}}A}\)

Lại có \(\widehat {BAH} = \widehat {EDM}\) (chứng minh trên)

Suy ra \(\widehat {HDA} = \widehat {EDM}\)

Xét tam giác ADE có \(\widehat {ADE} = 90^\circ \), AD = DE

Nên tam giác ADE vuông cân tại D

Suy ra \(\widehat {DAE} = \widehat {DE{\rm{A}}} = \frac{{90^\circ }}{2} = 45^\circ \)

Xét tam giác AID và tam giác EKD có

\(\widehat {DAE} = \widehat {DE{\rm{A}}}\) (chứng minh trên)

AD = DE (chứng minh câu a)

\(\widehat {IDA} = \widehat {EDK}\) (chứng minh trên)

Do đó AID = EKD (g.c.g)

Suy ra DI = KD, AI = EK (các cặp cạnh tương ứng)

Ta có OA = OI + IA, OE = OK + KE

Mà OA = OE, AI = EK (chứng minh trên)

Suy ra OI = OK

Xét tứ giác BIDK có BD cắt IK tại O

Mà OI = OK, OB = OD (chứng minh trên)

Suy ra BIDK là hình bình hành

Lại có DI = DK (chứng minh trên)

Do đó BIDK là hình thoi.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Xét ∆ABH và ∆CBA có:

\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)

\(\widehat {ABC}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)

Do đó AB2 = BH . BC.

b) Vì tam giác AHC vuông tại H nên  \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)

\(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)

Suy ra \(\widehat {BAH} = \widehat {HCA}\)

Xét ∆AHB và ∆CHA có:

\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)

\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)

Do đó  (g.g)

Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)

Do đó AH2 = BH . CH.

c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]

Suy ra AB . AC = AH . BC.

d) Xét ∆CAH và ∆CBA có:

\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).

\(\widehat {ACB}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)

Do đó AC2 = CH . BC.

Lời giải

Lời giải

a) Ta có:

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \)

= \(\overrightarrow {EA} + \overrightarrow {AB} + \overrightarrow {CD} \)

= \(\overrightarrow {EB} + \overrightarrow {CD} \)

= \(\overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)

= \(\overrightarrow {ED} + \overrightarrow {CB} + (\overrightarrow {BD} + \overrightarrow {DB} )\)

= \(\overrightarrow {CB} + \overrightarrow {ED} \)

Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \)

b) Ta có:

\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \)

= \(\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {CE} \)

= \(\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {CD} \)

= \(\overrightarrow {AE} + \overrightarrow {CD} \)

= \(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {BD} \)

= \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \)

Vậy \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay