Cho hình thang vuông ABCD có \(\widehat A = \widehat D = 90^\circ \), AB = 6 cm, CD = 12 cm, AD = 17 cm. Trên cạnh AD, đặt đoạn AE = 8cm. Chứng minh \(\widehat {BEC} = 90^\circ \).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Ta có AD = AE + ED
Suy ra DE = AD – AE
Mà AE = 8 cm, AD = 17cm (giả thiết)
Nên DE = 17 – 8 = 9 (cm)
Ta có \(\frac{{{\rm{AB}}}}{{{\rm{DE}}}} = \frac{6}{9} = \frac{2}{3}\); \(\frac{{{\rm{AE}}}}{{{\rm{DC}}}} = \frac{8}{{12}} = \frac{2}{3}\)
Suy ra \(\frac{{{\rm{AB}}}}{{{\rm{DE}}}} = \frac{{{\rm{AE}}}}{{{\rm{DC}}}}\)
Xét tam giác ABE và tam giác DEC có
\(\frac{{{\rm{AB}}}}{{{\rm{DE}}}} = \frac{{{\rm{AE}}}}{{{\rm{DC}}}}\) (chứng minh trên)
\(\widehat A = \widehat D = 90^\circ \) (giả thiết)
Do đó ∆ABE đồng dạng ∆DEC (c.g.c)
Suy ra \(\widehat {ABE} = \widehat {DEC}\)
Xét tam giác ABE vuông tại A có \(\widehat {ABE} + \widehat {A{\rm{E}}B} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà .\(\widehat {ABE} = \widehat {DEC}\). (chứng minh trên)
Nên \(\widehat {DEC} + \widehat {A{\rm{E}}B} = 90^\circ \)
Lại có \(\widehat {DEC} + \widehat {A{\rm{E}}B} + \widehat {{\rm{CE}}B} = \widehat {A{\rm{ED}}} = 180^\circ \)
Suy ra \(\widehat {BEC} = 90^\circ \)
Vậy \(\widehat {BEC} = 90^\circ \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Xét ∆ABH và ∆CBA có:
\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)
\(\widehat {ABC}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)
Do đó AB2 = BH . BC.
b) Vì tam giác AHC vuông tại H nên \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)
Suy ra \(\widehat {BAH} = \widehat {HCA}\)
Xét ∆AHB và ∆CHA có:
\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)
\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)
Do đó (g.g)
Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)
Do đó AH2 = BH . CH.
c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]
Suy ra AB . AC = AH . BC.
d) Xét ∆CAH và ∆CBA có:
\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).
\(\widehat {ACB}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)
Do đó AC2 = CH . BC.
Lời giải
Lời giải
a) Ta có:
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \)
= \(\overrightarrow {EA} + \overrightarrow {AB} + \overrightarrow {CD} \)
= \(\overrightarrow {EB} + \overrightarrow {CD} \)
= \(\overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {ED} + \overrightarrow {CB} + (\overrightarrow {BD} + \overrightarrow {DB} )\)
= \(\overrightarrow {CB} + \overrightarrow {ED} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \)
b) Ta có:
\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \)
= \(\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {CE} \)
= \(\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \)
Vậy \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.