Câu hỏi:

25/03/2023 2,516

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và AC; gọi E là điểm thuộc CD sao cho ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Media VietJack

Xét tam giác ABC có M và N lần lượt là trung điểm của AB và AC

Nên MN là đường trung bình của tam giác ABC

Suy ra MN // BC

Vì MN // BC, E là điểm chung

Nên giao tuyến của mp(MNE) và mp(BCD) là Ex

Gọi F là giao điểm của Ex và BD

Do đó MN // FE

Suy ra 4 điểm M, N, E, F đồng phẳng và MNEF là hình thang

Vậy hình thang MNEF là thiết diện cần tìm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Xét ∆ABH và ∆CBA có:

\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)

\(\widehat {ABC}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)

Do đó AB2 = BH . BC.

b) Vì tam giác AHC vuông tại H nên  \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)

\(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)

Suy ra \(\widehat {BAH} = \widehat {HCA}\)

Xét ∆AHB và ∆CHA có:

\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)

\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)

Do đó  (g.g)

Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)

Do đó AH2 = BH . CH.

c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]

Suy ra AB . AC = AH . BC.

d) Xét ∆CAH và ∆CBA có:

\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).

\(\widehat {ACB}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)

Do đó AC2 = CH . BC.

Lời giải

Lời giải

a) Ta có:

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \)

= \(\overrightarrow {EA} + \overrightarrow {AB} + \overrightarrow {CD} \)

= \(\overrightarrow {EB} + \overrightarrow {CD} \)

= \(\overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)

= \(\overrightarrow {ED} + \overrightarrow {CB} + (\overrightarrow {BD} + \overrightarrow {DB} )\)

= \(\overrightarrow {CB} + \overrightarrow {ED} \)

Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \)

b) Ta có:

\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \)

= \(\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {CE} \)

= \(\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {CD} \)

= \(\overrightarrow {AE} + \overrightarrow {CD} \)

= \(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {BD} \)

= \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \)

Vậy \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay