Câu hỏi:

25/03/2023 455

Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thẳng vuông góc với OB tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.

a) Chứng minh: AMON là hình thoi.

b) Chứng minh: MN là tiếp tuyến của đường tròn.

c) Tính diện tích AMON.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) ) Xét (O; R) có AB là 2 tiếp tuyến tại điểm B

Suy ra AB OB

Mà ON OB

Nên AB // ON

Xét (O;R) có AB , AC là 2 tiếp tuyến cắt nhau tại A

Suy ra AB = AC và AO là tia phân giác của góc BAC

Xét (O; R) có AC là 2 tiếp tuyến tại điểm C

Suy ra AC OC

Mà OM OC

Nên AC // OM

Xét tứ giác AMON có AM // ON và AN // OM (chứng minh trên)

Suy ra AMON là hình bình hành

Mà AO là tia phân giác của góc MAN

Suy ra AMON là hình thoi

b) Gọi I là trung điểm của OA

Suy ra \[IA = IO = \frac{1}{2}OA = \frac{{2R}}{2} = R\].

Do đó OI là bán kính của (O)

Mà AMON là hình thoi

Nên OA vuông góc MN tại điểm I

Hay OI vuông góc MN tại điểm I

Xét (O; R) có OI là bán kính của (O), OI vuông góc MN tại điểm I

Suy ra MN là tiếp tuyến của đường tròn (O­)

c) Vì AMON là hình thoi, AO cắt MN tại I

Nên I là trung điểm của MN
suy ra MN = 2 IN

Xét tam giác OAB vuông ở B có sin\(\widehat {OAB} = \frac{{OB}}{{AO}} = \frac{R}{{2{\rm{R}}}} = \frac{1}{2}\)

Suy ra \(\widehat {OAB}\) = 30°

Vì AB // ON nên \(\widehat {OAB} = \widehat {ION}\) (hai góc so le trong)

Mà \(\widehat {OAB}\) = 30°

Suy ra \(\widehat {ION} = 30^\circ \)

Xét tam giác OIN vuông ở I có \(\tan \widehat {ION} = \frac{{IN}}{{OI}}\)

Hay \(\tan 30^\circ = \frac{{IN}}{R}\)

Suy ra \(IN = \frac{R}{{\sqrt 3 }}\)

Mà MN = 2IN (chứng minh trên)

Do đó \(MN = \frac{{2R}}{{\sqrt 3 }}\)

Diện tích hình thoi AMON bằng: \(\frac{1}{2}OA.MN = \frac{1}{2}.2R.\frac{{2R}}{{\sqrt 3 }} = \frac{{2{R^2}}}{{\sqrt 3 }}\).

Vậy diện tích hình thôi AMON là \(\frac{{2{R^2}}}{{\sqrt 3 }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:

a) AB2 = BH . BC;

b) AH2 = BH . HC;

c) AB . AC = AH . BC;

d) AC2 = CH . BC.

Xem đáp án » 13/07/2024 21,735

Câu 2:

Cho 5 điểm A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).

b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Xem đáp án » 13/07/2024 20,573

Câu 3:

Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.

a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.

b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.

Xem đáp án » 13/07/2024 14,804

Câu 4:

Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian?

Xem đáp án » 13/07/2024 11,990

Câu 5:

Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:

a) Ít nhất 2 bóng tốt.  

b) Ít nhất 1 bóng tốt.

Xem đáp án » 13/07/2024 11,613

Câu 6:

Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.

Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).

Xem đáp án » 13/07/2024 10,997

Câu 7:

Cho hình thoi ABCD, O là giao điểm hai đường chéo. Vẽ đường thẳng qua B song song AC, vẽ đường thẳng qua C song song với BD, hai đường thẳng đó cắt nhau tại K.

a) Tứ giác OBKC là hình gì? Vì sao?

b) Chứng minh: AB = OK.

c) Tìm điều kiện của tứ giác ABCD để tứ giác OBKC là hình vuông.

Xem đáp án » 13/07/2024 9,163

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store