Câu hỏi:
25/03/2023 521Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thẳng vuông góc với OB tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
a) Chứng minh: AMON là hình thoi.
b) Chứng minh: MN là tiếp tuyến của đường tròn.
c) Tính diện tích AMON.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) ) Xét (O; R) có AB là 2 tiếp tuyến tại điểm B
Suy ra AB ⊥ OB
Mà ON ⊥ OB
Nên AB // ON
Xét (O;R) có AB , AC là 2 tiếp tuyến cắt nhau tại A
Suy ra AB = AC và AO là tia phân giác của góc BAC
Xét (O; R) có AC là 2 tiếp tuyến tại điểm C
Suy ra AC ⊥ OC
Mà OM ⊥ OC
Nên AC // OM
Xét tứ giác AMON có AM // ON và AN // OM (chứng minh trên)
Suy ra AMON là hình bình hành
Mà AO là tia phân giác của góc MAN
Suy ra AMON là hình thoi
b) Gọi I là trung điểm của OA
Suy ra \[IA = IO = \frac{1}{2}OA = \frac{{2R}}{2} = R\].
Do đó OI là bán kính của (O)
Mà AMON là hình thoi
Nên OA vuông góc MN tại điểm I
Hay OI vuông góc MN tại điểm I
Xét (O; R) có OI là bán kính của (O), OI vuông góc MN tại điểm I
Suy ra MN là tiếp tuyến của đường tròn (O)
c) Vì AMON là hình thoi, AO cắt MN tại I
Nên I là trung điểm của MN
suy ra MN = 2 IN
Xét tam giác OAB vuông ở B có sin\(\widehat {OAB} = \frac{{OB}}{{AO}} = \frac{R}{{2{\rm{R}}}} = \frac{1}{2}\)
Suy ra \(\widehat {OAB}\) = 30°
Vì AB // ON nên \(\widehat {OAB} = \widehat {ION}\) (hai góc so le trong)
Mà \(\widehat {OAB}\) = 30°
Suy ra \(\widehat {ION} = 30^\circ \)
Xét tam giác OIN vuông ở I có \(\tan \widehat {ION} = \frac{{IN}}{{OI}}\)
Hay \(\tan 30^\circ = \frac{{IN}}{R}\)
Suy ra \(IN = \frac{R}{{\sqrt 3 }}\)
Mà MN = 2IN (chứng minh trên)
Do đó \(MN = \frac{{2R}}{{\sqrt 3 }}\)
Diện tích hình thoi AMON bằng: \(\frac{1}{2}OA.MN = \frac{1}{2}.2R.\frac{{2R}}{{\sqrt 3 }} = \frac{{2{R^2}}}{{\sqrt 3 }}\).
Vậy diện tích hình thôi AMON là \(\frac{{2{R^2}}}{{\sqrt 3 }}\).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) AB2 = BH . BC;
b) AH2 = BH . HC;
c) AB . AC = AH . BC;
d) AC2 = CH . BC.
Câu 2:
Cho 5 điểm A, B, C, D, E. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).
b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Câu 3:
Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.
b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.
Câu 4:
Cho đường tròn (O; R), đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng d ở M và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với MP cắt đường thẳng (d’) ở N.
a) Chứng minh OM = OP và tam giác NMP cân
b) Kẻ OI vuông góc MN. Chứng minh MN là tiếp tuyến của đường tròn (O) tại I
c) Chứng minh AM . BN = R2
d) Tìm vị trí của M để diện tích tứ giác AMNB nhỏ nhất.
Câu 5:
Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.
Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
Câu 6:
Câu 7:
Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:
a) Ít nhất 2 bóng tốt.
b) Ít nhất 1 bóng tốt.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
về câu hỏi!