Cho đường tròn (O; R) có đường kính AB. Vẽ tiếp tuyến Ax, By của đường tròn(O) lấy một điểm C sao cho AC < BC. Tiếp tuyến tại C của đường tròn (O) cắt Ax, By lần lượt tại E, F.
a) Chứng minh EF= AE + BF.
b) BC cắt Ax tại D. Chứng minh AD2 = DC. DB.
c) Gọi I là giao điểm của OD và AC, OE cắt AC tại H, tia DH cắt AB tại K. Chứng minh IK//AD.
d) IK cắt EO tại M. Chứng minh: A, M, F thẳng hàng.
Cho đường tròn (O; R) có đường kính AB. Vẽ tiếp tuyến Ax, By của đường tròn(O) lấy một điểm C sao cho AC < BC. Tiếp tuyến tại C của đường tròn (O) cắt Ax, By lần lượt tại E, F.
a) Chứng minh EF= AE + BF.
b) BC cắt Ax tại D. Chứng minh AD2 = DC. DB.
c) Gọi I là giao điểm của OD và AC, OE cắt AC tại H, tia DH cắt AB tại K. Chứng minh IK//AD.
d) IK cắt EO tại M. Chứng minh: A, M, F thẳng hàng.
Quảng cáo
Trả lời:
Lời giải
a) Xét (O;R) có EA , EC là 2 tiếp tuyến cắt nhau tại E
Suy ra AE = EC
Mà AO = OC nên EO là trung trực của AC
Hay EO ⊥ AC
Xét (O;R) có FC , FB là 2 tiếp tuyến cắt nhau tại F
Suy ra FB = FC
Mà OF = OB nên FO là trung trực của BC
Hay OF ⊥ BC
Ta có EF = EC + CF = AE+ BF
Vậy EF= AE+ BF
b) Vì tam giác ABC nội tiếp đường tròn đường kính AB
nên tam giác ABC vuông tại C
Suy ra AC ⊥ BD
Xét tam giác ABD vuông tại A có AC ⊥ BD
Suy ra AD2 = DC. DB (hệ thức lượng trong tam giác)
Vậy AD2 = DC. DB
c) Ta có EA = EC, OA = OC
Nên OE là trung trực của AC
Suy ra OE ⊥ AC
Mà AC ⊥ BD
Do đó OE // BD (quan hệ từ vuông góc đến song song)
Trên tia đối của tia EO lấy P sao cho EP = EH
Xét tứ giác AHDP có E là giao điêm của hai đường chéo AD và HP, E là trung điểm của HP
Suy ra AHDP là hình bình hành
Suy ra HI // PD
Do đó \(\frac{{{\rm{OI}}}}{{{\rm{DI}}}} = \frac{{{\rm{OH}}}}{{{\rm{PH}}}}\)
Vì HK // AP nên \(\frac{{{\rm{OK}}}}{{{\rm{AK}}}} = \frac{{{\rm{OH}}}}{{{\rm{PH}}}}\)
Mà \(\frac{{{\rm{OI}}}}{{{\rm{DI}}}} = \frac{{{\rm{OH}}}}{{{\rm{PH}}}}\)
Suy ra \(\frac{{{\rm{OI}}}}{{{\rm{DI}}}} = \frac{{{\rm{OK}}}}{{{\rm{AK}}}}\)
Do đó IK // AD.
d) Ta có IK // AD, AD ⊥ BA nên IK ⊥ AB
Xét tam giác IAO có HO ⊥ AC, IK ⊥ AO và OH cắt IK tại M
Suy ra M là trực tâm tam giác OIA
Do đó AM ⊥ IO (1)
Gọi Q là giao điểm của FO và AD
Xét tam giác OBF và tam giác OAQ có
\(\widehat {OBF} = \widehat {OAQ}\left( { = 90^\circ } \right)\)
OA = OB
\(\widehat {BOF} = \widehat {QOA}\) (hai góc đối đỉnh)
Do đó DOBF = DOAQ (g.c.g)
Suy ra FO = QO (hai cạnh tương ứng)
Xét tứ giác AFBQ có
AB cắt QF tại điểm O
O là trung điểm của AB, QF
Suy ra AFBQ là hình bình hành
Do đó AF // BQ
Xét tam giác BQD có AB ⊥ DQ, QF ⊥ DB
AB cắt QF tại O
Suy ra O là trực tâm tam giác BQD
Nên DO ⊥ QB
Mà BQ // AF (chứng minh trên)
Suy ra DO ⊥ AF (2)
Từ (1) và (2) suy ra A, M, F thẳng hàng
Vậy A, M, F thẳng hàng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Xét ∆ABH và ∆CBA có:
\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)
\(\widehat {ABC}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)
Do đó AB2 = BH . BC.
b) Vì tam giác AHC vuông tại H nên \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)
Suy ra \(\widehat {BAH} = \widehat {HCA}\)
Xét ∆AHB và ∆CHA có:
\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)
\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)
Do đó (g.g)
Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)
Do đó AH2 = BH . CH.
c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]
Suy ra AB . AC = AH . BC.
d) Xét ∆CAH và ∆CBA có:
\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).
\(\widehat {ACB}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)
Do đó AC2 = CH . BC.
Lời giải
Lời giải
a) Ta có:
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \)
= \(\overrightarrow {EA} + \overrightarrow {AB} + \overrightarrow {CD} \)
= \(\overrightarrow {EB} + \overrightarrow {CD} \)
= \(\overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {ED} + \overrightarrow {CB} + (\overrightarrow {BD} + \overrightarrow {DB} )\)
= \(\overrightarrow {CB} + \overrightarrow {ED} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \)
b) Ta có:
\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \)
= \(\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {CE} \)
= \(\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \)
Vậy \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.