Câu hỏi:

13/07/2024 1,724

Cho đường tròn (O; R) có đường kính AB. Vẽ tiếp tuyến Ax, By của đường tròn(O) lấy một điểm C sao cho AC < BC. Tiếp tuyến tại C của đường tròn (O) cắt Ax, By lần lượt tại E, F.

a) Chứng minh EF= AE + BF.

b) BC cắt Ax tại D. Chứng minh AD2 = DC. DB.

c) Gọi I là giao điểm của OD và AC, OE cắt AC tại H, tia DH cắt AB tại K. Chứng minh IK//AD.

d) IK cắt EO tại M. Chứng minh: A, M, F thẳng hàng.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét (O;R) có EA , EC là 2 tiếp tuyến cắt nhau tại E

Suy ra AE = EC

Mà AO = OC nên EO là trung trực của AC

Hay EO AC

Xét (O;R) có FC , FB là 2 tiếp tuyến cắt nhau tại F

Suy ra FB = FC

Mà OF = OB nên FO là trung trực của BC

Hay OF BC

Ta có EF = EC + CF = AE+ BF

Vậy EF= AE+ BF

b) Vì tam giác ABC nội tiếp đường tròn đường kính AB

nên tam giác ABC vuông tại C

Suy ra AC BD

Xét tam giác ABD vuông tại A có AC BD

Suy ra AD2 = DC. DB (hệ thức lượng trong tam giác)

Vậy AD2 = DC. DB

c) Ta có EA = EC, OA = OC

Nên OE là trung trực của AC

Suy ra OE AC

Mà AC BD

Do đó OE // BD (quan hệ từ vuông góc đến song song)

Trên tia đối của tia EO lấy P sao cho EP = EH

Xét tứ giác AHDP có E là giao điêm của hai đường chéo AD và HP, E là trung điểm của HP

Suy ra AHDP là hình bình hành

Suy ra HI // PD

Do đó \(\frac{{{\rm{OI}}}}{{{\rm{DI}}}} = \frac{{{\rm{OH}}}}{{{\rm{PH}}}}\)

Vì HK // AP nên \(\frac{{{\rm{OK}}}}{{{\rm{AK}}}} = \frac{{{\rm{OH}}}}{{{\rm{PH}}}}\)

Mà \(\frac{{{\rm{OI}}}}{{{\rm{DI}}}} = \frac{{{\rm{OH}}}}{{{\rm{PH}}}}\)

Suy ra \(\frac{{{\rm{OI}}}}{{{\rm{DI}}}} = \frac{{{\rm{OK}}}}{{{\rm{AK}}}}\)

Do đó IK // AD.

d) Ta có IK // AD, AD BA nên IK AB

Xét tam giác IAO có HO AC, IK AOOH cắt IK tại M

Suy ra M là trực tâm tam giác OIA

Do đó AM IO               (1)

Gọi Q là giao điểm của FO và AD

Xét tam giác OBF và tam giác OAQ có

\(\widehat {OBF} = \widehat {OAQ}\left( { = 90^\circ } \right)\)

OA = OB

\(\widehat {BOF} = \widehat {QOA}\) (hai góc đối đỉnh)

Do đó DOBF = DOAQ (g.c.g)

Suy ra FO = QO (hai cạnh tương ứng)

Xét tứ giác AFBQ có

AB cắt QF tại điểm O

O là trung điểm của AB, QF

Suy ra AFBQ là hình bình hành

Do đó AF // BQ

Xét tam giác BQD có AB DQ, QF DB

AB cắt QF tại O

Suy ra O là trực tâm tam giác BQD

Nên DO QB

Mà BQ // AF (chứng minh trên)

Suy ra DO AF    (2)

Từ (1) và (2) suy ra A, M, F thẳng hàng

Vậy A, M, F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:

a) AB2 = BH . BC;

b) AH2 = BH . HC;

c) AB . AC = AH . BC;

d) AC2 = CH . BC.

Xem đáp án » 13/07/2024 20,218

Câu 2:

Cho 5 điểm A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).

b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Xem đáp án » 13/07/2024 15,025

Câu 3:

Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.

a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.

b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.

Xem đáp án » 13/07/2024 12,040

Câu 4:

Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian?

Xem đáp án » 13/07/2024 11,706

Câu 5:

Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:

a) Ít nhất 2 bóng tốt.  

b) Ít nhất 1 bóng tốt.

Xem đáp án » 13/07/2024 11,341

Câu 6:

Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.

Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).

Xem đáp án » 13/07/2024 9,047

Câu 7:

Chứng minh sin 3x = 3sin x – 4sin3x, cos 3x = 4cos3x – 3cos x

Xem đáp án » 13/07/2024 7,880

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store