Câu hỏi:
13/07/2024 3,944
Cho (O; R) có AB là đường kính. Lấy điểm C thuộc tiếp tuyến Ax, BC cắt đường tròn (O) tại H.
a) Chứng minh BH . BC = 4R2.
b) Phân giác của góc ABC cắt (O) ở M và cắt AC ở D. Chứng minh BM . BD = BH . BC.
c) Gọi K là trung điểm của AC. Chứng minh KH là tiếp tuyến của đường tròn (O).
Cho (O; R) có AB là đường kính. Lấy điểm C thuộc tiếp tuyến Ax, BC cắt đường tròn (O) tại H.
a) Chứng minh BH . BC = 4R2.
b) Phân giác của góc ABC cắt (O) ở M và cắt AC ở D. Chứng minh BM . BD = BH . BC.
c) Gọi K là trung điểm của AC. Chứng minh KH là tiếp tuyến của đường tròn (O).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Vì AB là đường kính (O; R) nên AB = 2R
Vì C thuộc tiếp tuyến Ax của (O)
Nên CA ⊥ AB
Suy ra tam giác ABC vuông tại A
Vì H thuộc (O) đường kính AB
Nên tam giác ABH vuông tại H
Suy ta HA ⊥ HB
Xét tam giác ABC vuông tại A có HA ⊥ HB (chứng minh trên)
Suy ra BH . BC = AB2 = (2R)2 = 4 R2
b) Vì M thuộc (O) đường kính AB
Nên tam giác ABM vuông tại M
Suy ta MA ⊥ MB
Xét tam giác ABC vuông tại A có MA ⊥ MB (chứng minh trên)
Suy ra BM . BD = AB2
Mà BH . BC = AB2 (chứng minh câu a)
Do đó BM . BD = BH . BC
c) Vì H, A cùng thuộc (O)
Nên OA = OH
Do đó tam giác AOH cân tại O
Suy ra \(\widehat {OAH} = \widehat {OHA}\)
Vì AH ⊥ BC nên tam giác AHC vuông tại H
Suy ra \(\widehat {CAH} + \widehat {HCA} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {CAH} + \widehat {HAO} = \widehat {CAO} = 90^\circ \)
Suy ra \(\widehat {OAH} = \widehat {HCA}\)
Lại có \(\widehat {OAH} = \widehat {OHA}\) (chứng minh trên)
Do đó \(\widehat {OHA} = \widehat {HCA}\) (1)
Xét tam giác AHC vuông tại H có HK là đường trung tuyến
Suy ra \(HK = KC = \frac{1}{2}AC\)
Do đó tam giác HCK cân tại K
Suy ra \(\widehat {KHC} = \widehat {KCH}\) (2)
Từ (1) và (2) suy ra \(\widehat {KHC} = \widehat {OHA}\)
Mặt khác \(\widehat {KHC} + \widehat {KHA} = \widehat {CHA} = 90^\circ \)
Suy ra \(\widehat {OHA} + \widehat {KHA} = 90^\circ \)
Hay \(\widehat {OHK} = 90^\circ \)
Nên OH ⊥ HK
Xét (O) có H thuộc (O), OH ⊥ HK
Suy ra KH là tiếp tuyến của (O)
Vậy KH là tiếp tuyến của (O).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Xét ∆ABH và ∆CBA có:
\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)
\(\widehat {ABC}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)
Do đó AB2 = BH . BC.
b) Vì tam giác AHC vuông tại H nên \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)
Suy ra \(\widehat {BAH} = \widehat {HCA}\)
Xét ∆AHB và ∆CHA có:
\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)
\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)
Do đó (g.g)
Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)
Do đó AH2 = BH . CH.
c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]
Suy ra AB . AC = AH . BC.
d) Xét ∆CAH và ∆CBA có:
\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).
\(\widehat {ACB}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)
Do đó AC2 = CH . BC.
Lời giải
Lời giải
a) Ta có:
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \)
= \(\overrightarrow {EA} + \overrightarrow {AB} + \overrightarrow {CD} \)
= \(\overrightarrow {EB} + \overrightarrow {CD} \)
= \(\overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {ED} + \overrightarrow {CB} + (\overrightarrow {BD} + \overrightarrow {DB} )\)
= \(\overrightarrow {CB} + \overrightarrow {ED} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \)
b) Ta có:
\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \)
= \(\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {CE} \)
= \(\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \)
Vậy \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.