Câu hỏi:

13/07/2024 3,249

Cho (O; R) có AB là đường kính. Lấy điểm C thuộc tiếp tuyến Ax, BC cắt đường tròn (O) tại H.

a) Chứng minh BH . BC = 4R2.

b) Phân giác của góc ABC cắt (O) ở M và cắt AC ở D. Chứng minh BM . BD = BH . BC.

c) Gọi K là trung điểm của AC. Chứng minh KH là tiếp tuyến của đường tròn (O).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì AB là đường kính (O; R) nên AB = 2R

Vì C thuộc tiếp tuyến Ax của (O)

Nên CA AB

Suy ra tam giác ABC vuông tại A

Vì H thuộc (O) đường kính AB

Nên tam giác ABH vuông tại H

Suy ta HA HB

Xét tam giác ABC vuông tại A có HA HB (chứng minh trên)

Suy ra BH . BC = AB2 = (2R)2 = 4 R2

b) Vì M thuộc (O) đường kính AB

Nên tam giác ABM vuông tại M

Suy ta MA MB

Xét tam giác ABC vuông tại A có MA MB (chứng minh trên)

Suy ra BM . BD = AB2

Mà BH . BC = AB2 (chứng minh câu a)

Do đó BM . BD = BH . BC

c) Vì H, A cùng thuộc (O)

Nên OA = OH

Do đó tam giác AOH cân tại O

Suy ra \(\widehat {OAH} = \widehat {OHA}\)

Vì AH BC nên tam giác AHC vuông tại H

Suy ra \(\widehat {CAH} + \widehat {HCA} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Mà \(\widehat {CAH} + \widehat {HAO} = \widehat {CAO} = 90^\circ \)

Suy ra \(\widehat {OAH} = \widehat {HCA}\)

Lại có \(\widehat {OAH} = \widehat {OHA}\) (chứng minh trên)

Do đó \(\widehat {OHA} = \widehat {HCA}\)                  (1)

Xét tam giác AHC vuông tại H có HK là đường trung tuyến

Suy ra \(HK = KC = \frac{1}{2}AC\)

Do đó tam giác HCK cân tại K

Suy ra \(\widehat {KHC} = \widehat {KCH}\)                            (2)

Từ (1) và (2) suy ra \(\widehat {KHC} = \widehat {OHA}\)

Mặt khác \(\widehat {KHC} + \widehat {KHA} = \widehat {CHA} = 90^\circ \)

Suy ra \(\widehat {OHA} + \widehat {KHA} = 90^\circ \)

Hay \(\widehat {OHK} = 90^\circ \)

Nên OH HK

Xét (O) có H thuộc (O), OH HK

Suy ra KH là tiếp tuyến của (O)

Vậy KH là tiếp tuyến của (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:

a) AB2 = BH . BC;

b) AH2 = BH . HC;

c) AB . AC = AH . BC;

d) AC2 = CH . BC.

Xem đáp án » 13/07/2024 21,734

Câu 2:

Cho 5 điểm A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).

b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Xem đáp án » 13/07/2024 20,573

Câu 3:

Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.

a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.

b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.

Xem đáp án » 13/07/2024 14,804

Câu 4:

Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian?

Xem đáp án » 13/07/2024 11,989

Câu 5:

Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:

a) Ít nhất 2 bóng tốt.  

b) Ít nhất 1 bóng tốt.

Xem đáp án » 13/07/2024 11,613

Câu 6:

Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.

Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).

Xem đáp án » 13/07/2024 10,996

Câu 7:

Cho hình thoi ABCD, O là giao điểm hai đường chéo. Vẽ đường thẳng qua B song song AC, vẽ đường thẳng qua C song song với BD, hai đường thẳng đó cắt nhau tại K.

a) Tứ giác OBKC là hình gì? Vì sao?

b) Chứng minh: AB = OK.

c) Tìm điều kiện của tứ giác ABCD để tứ giác OBKC là hình vuông.

Xem đáp án » 13/07/2024 9,163

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store