Cho tứ giác ABCD có O là giao điểm hai điểm hai đường chéo và diện tích tam giác AOB bằng 4, diện tích tam giác COD bằng 9. Tìm giá trị nhỏ nhất của diện tích tứ giác ABCD.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải

Đặt SAOD = x, SBOC = y
Ta có \(\frac{{{S_{AO{\rm{D}}}}}}{{{S_{CO{\rm{D}}}}}} = \frac{{AO}}{{OC}}\), \(\frac{{{S_{AOB}}}}{{{S_{COB}}}} = \frac{{AO}}{{OC}}\)
Suy ra \(\frac{{{S_{AO{\rm{D}}}}}}{{{S_{CO{\rm{D}}}}}} = \frac{{{S_{AOB}}}}{{{S_{COB}}}}\)
Hay \(\frac{x}{9} = \frac{4}{y}\)
Suy ra xy = 36
\[{S_{ABC{\rm{D}}}} = {S_{AOB}} + {S_{BOC}} + {S_{CO{\rm{D}}}} + {S_{AO{\rm{D}}}} = 4 + y + 9 + x = x + y + 13\]
Suy ra \[{S_{ABCD}} \ge 2\sqrt {xy} + 13\]
Nên \[{S_{ABCD}} \ge 2\sqrt {36} + 13\]
Hay SABCD ≥ 25
Dấu bằng xảy ra khi x = y = 6
Vậy diện tích tứ giác ABCD nhỏ nhất bằng 25 khi SAOD = SBOC = 6.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải

a) Xét ∆ABH và ∆CBA có:
\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)
\(\widehat {ABC}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)
Do đó AB2 = BH . BC.
b) Vì tam giác AHC vuông tại H nên \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)
Suy ra \(\widehat {BAH} = \widehat {HCA}\)
Xét ∆AHB và ∆CHA có:
\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)
\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)
Do đó (g.g)
Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)
Do đó AH2 = BH . CH.
c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]
Suy ra AB . AC = AH . BC.
d) Xét ∆CAH và ∆CBA có:
\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).
\(\widehat {ACB}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)
Do đó AC2 = CH . BC.
Lời giải
Lời giải
a) Ta có:
\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \)
= \(\overrightarrow {EA} + \overrightarrow {AB} + \overrightarrow {CD} \)
= \(\overrightarrow {EB} + \overrightarrow {CD} \)
= \(\overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {ED} + \overrightarrow {CB} + (\overrightarrow {BD} + \overrightarrow {DB} )\)
= \(\overrightarrow {CB} + \overrightarrow {ED} \)
Vậy \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \)
b) Ta có:
\(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \)
= \(\overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {CE} \)
= \(\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CD} \)
= \(\overrightarrow {AE} + \overrightarrow {CB} + \overrightarrow {BD} \)
= \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \)
Vậy \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.