Câu hỏi:
13/07/2024 7,376Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Hình chữ nhật ABCD có AC là tia phân giác của góc BAD
Suy ra \(\widehat {DAC} = \widehat {CAB}\)
Vì ABCD là hình chữ nhật
Nên \(\widehat {ADC} = \widehat {ABC} = 90^\circ \)
Xét tam giác ABC và tam giác ADC có
\(\widehat {ADC} = \widehat {ABC} = 90^\circ \)
AC là cạnh chung
\(\widehat {DAC} = \widehat {CAB}\) (chứng minh trên)
Do đó △ABC = △ADC (cạnh huyền – góc nhọn)
Suy ra AB = AD
Xét hình chữ nhật ABCD có AB = AD
Nên ABCD là hình vuông
Vậy hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) AB2 = BH . BC;
b) AH2 = BH . HC;
c) AB . AC = AH . BC;
d) AC2 = CH . BC.
Câu 2:
Cho 5 điểm A, B, C, D, E. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).
b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).
Câu 3:
Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.
b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.
Câu 4:
Câu 5:
Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:
a) Ít nhất 2 bóng tốt.
b) Ít nhất 1 bóng tốt.
Câu 6:
Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.
Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
về câu hỏi!