Câu hỏi:

13/07/2024 1,565

Cho đường tròn tâm O, đường kính AB và điểm C thuộc đường tròn sao cho AC > BC. Qua O vẽ đường thẳng vuông góc với dây AC ở H. Kẻ tiếp tuyến tại A của đường tròn cắt tia OH ở D. BD cắt đường tròn tâm O ở E.

a) Chứng minh HA = HC và \(\widehat {DCO} = 90^\circ \)

b) Chứng minh DH . DO = DE . DB

c) Trên tia đối của EA lấy F sao cho E là trung điểm AF. Từ F vẽ đường thẳng vuông góc AD ở K. KF cắt BC ở M. Chứng minh MK = MF.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì A, C cùng thuộc (O), OH AC

Nên H là trung điểm của AC (liên hệ giữa đường kính và dây cung)

Suy ra AH = HC

Vì OA = OC nên tam giác AOC cân tại O

Mà OH là đường cao

Suy ra OH là phân giác của góc AOC

Do đó \(\widehat {AOH} = \widehat {HOC}\)

Xét tam giác DAO và tam giác DCO có

DO là cạnh chung

\(\widehat {AOD} = \widehat {DOC}\) (chứng minh trên)

OA = OC

Do đó DAO = DCO (c.g.c)

Suy ra \(\widehat {DAO} = \widehat {DCO}\) (hai góc tương ứng)

Mà \(\widehat {DAO} = 90^\circ \) (vì DA là tiếp tuyến của (O))

Nên \(\widehat {DCO} = 90^\circ \)

b) Xét tam giác ADO vuông tại A có AH DO

Nên DH . DO = AD2                                        (1)

Vì E thuộc đường tròn (O) đường kính AB

Nên tam giác ABE vuông tại E

Suy ra AE BE

Xét tam giác ADB vuông tại A có AE DB

Nên DE . DB = AD2                                        (2)

Từ (1) và (2) suy ra DH . DO = DE . DB

c) Gọi P là giao điểm của AM và DO, Q là giao điểm của AD và EP

Xét tam giác ABM có OP // BM, OA = OB

Suy ra P là trung điểm của AM

Xét tam giác AMF có

P là trung điểm của AM, E là trung điểm của AF

Suy ra PE là đường trung bình

Do đó PE // MF

Mà MF AD, AB AD

Suy ra PE // KF // AB

Xét tam giác AKF có EA = EF, QE // FK

Suy ra Q là trung điểm của AK

Xét tam giác ADB có \(\frac{{PQ}}{{AO}} = \frac{{DP}}{{DO}} = \frac{{PE}}{{OB}}\)

Mà AO = BO nên PQ = PE

Xét tam giác AKF có \(\frac{{PQ}}{{KM}} = \frac{{PE}}{{MF}}\left( { = \frac{{AP}}{{AM}}} \right)\)

Suy ra KM = MF

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:

a) AB2 = BH . BC;

b) AH2 = BH . HC;

c) AB . AC = AH . BC;

d) AC2 = CH . BC.

Xem đáp án » 13/07/2024 21,735

Câu 2:

Cho 5 điểm A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EA} \) = \(\overrightarrow {CB} + \overrightarrow {ED} \).

b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} \) = \(\overrightarrow {A{\rm{E}}} - \overrightarrow {BD} + \overrightarrow {CB} \).

Xem đáp án » 13/07/2024 20,573

Câu 3:

Cho (O; R), lấy điểm A cách O một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.

a) Chứng minh: Tam giác OBA vuông tại B và Tam giác OAK cân tại K.

b) Đường thẳng KI cắt AB tại M. Chứng minh rằng KM là tiếp tuyến của đường tròn (O).
c) Tính chu vi tam giác AMK theo R.

Xem đáp án » 13/07/2024 14,804

Câu 4:

Hai lớp 9A và 9B cùng tham gia lao động vệ sinh sân trường thì công việc được hoàn thành sau 1 giờ 20 phút. Nếu mỗi lớp chia nhau làm nửa công việc thì thời gian hoàn tất là 3 giờ. Hỏi nếu mỗi lớp làm một mình thì phải mất bao nhiêu thời gian?

Xem đáp án » 13/07/2024 11,990

Câu 5:

Một hộp bóng đèn có 12 bóng, trong đó có 7 bóng tốt. Lấy ngẫu nhiên 3 bóng. Tính xác suất để lấy được:

a) Ít nhất 2 bóng tốt.  

b) Ít nhất 1 bóng tốt.

Xem đáp án » 13/07/2024 11,613

Câu 6:

Cho a, b, c đôi một khác nhau thỏa mãn (a + b + c)2 = a2 + b2 + c2.

Tính \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).

Xem đáp án » 13/07/2024 10,997

Câu 7:

Cho hình thoi ABCD, O là giao điểm hai đường chéo. Vẽ đường thẳng qua B song song AC, vẽ đường thẳng qua C song song với BD, hai đường thẳng đó cắt nhau tại K.

a) Tứ giác OBKC là hình gì? Vì sao?

b) Chứng minh: AB = OK.

c) Tìm điều kiện của tứ giác ABCD để tứ giác OBKC là hình vuông.

Xem đáp án » 13/07/2024 9,163

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store