Câu hỏi:

13/07/2024 537

Tìm m để phương trình 2x2 + (m + 1)x + m – 8 = 0 có nghiệm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Phương trình 2x2 + (m + 1)x + m – 8 = 0 (1) là phương trình bậc hai một ẩn có:

a = 2, b = m + 1, c = m – 8 (m là tham số)

∆ = (m + 1)2 – 4 . 2 . (m – 8) = m2 + 2m + 1 – 8m + 64 = m2 – 6m + 65

Để phương trình (1) có nghiệm khi và chỉ khi ∆ ≥ 0  m2 – 6m + 65 ≥ 0

Xét tam thức bậc hai m2 – 6m + 65 có:

m = (– 6)2 – 4 . 1 . 65 = – 224 < 0 và hệ số am = 1 > 0

Sử dụng định lí về dấu của tam thức bậc hai, tam thức m2 – 6m + 65 mang dấu dương với mọi m

Do đó m2 – 6m + 65 > 0 với mọi số thực m

Vậy phương trình đã cho luôn có nghiệm với mọi giá trị thực của m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Xét ∆ABH và ∆CBA có:

\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)

\(\widehat {ABC}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)

Do đó AB2 = BH . BC.

b) Vì tam giác AHC vuông tại H nên  \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)

\(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)

Suy ra \(\widehat {BAH} = \widehat {HCA}\)

Xét ∆AHB và ∆CHA có:

\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)

\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)

Do đó  (g.g)

Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)

Do đó AH2 = BH . CH.

c) Ta có \[{S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\]

Suy ra AB . AC = AH . BC.

d) Xét ∆CAH và ∆CBA có:

\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).

\(\widehat {ACB}\) chung.

Do đó  (g.g)

Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)

Do đó AC2 = CH . BC.

Lời giải

Lời giải

Ta có n(Ω) = \({\rm{C}}_{12}^3\) = 220

a) Gọi biến cố A: “ trong 3 bóng lấy ra có ít nhất 2 bóng tốt ”

+) Trong 3 bóng có 2 bóng tốt, 1 bóng không tốt: \({\rm{C}}_5^1.{\rm{C}}_7^2\)

+) Trong 3 bóng có 3 bóng tốt: \({\rm{C}}_7^3\)

Suy ra n(A) = \({\rm{C}}_5^1.{\rm{C}}_7^2\) + \({\rm{C}}_7^3\) = 140

Vậy xác suất để lấy được ít nhất 2 bóng tốt là \(P\left( A \right) = \frac{{140}}{{220}} = \frac{7}{{11}}\).

b) Gọi biến cố B: “ trong 3 bóng lấy ra có ít nhất 1 bóng tốt ”

Gọi \(\overline {\rm{B}} \) là biến có đối của biến cố B: “ trong 3 bóng lấy ra đều là bóng không tốt ”

Nên \({\rm{n}}\left( {\overline B } \right){\rm{ = }}\,{\rm{C}}_5^3 = 10\)

Suy ra \(P\left( {\overline B } \right) = \frac{{10}}{{220}} = \frac{1}{{22}}\).

Vậy xác suất để lấy được ít nhất 1 bóng tốt là: \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{{22}} = \frac{{21}}{{22}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP