Câu hỏi:
13/07/2024 6,946Cho hàm số y = (2 – m)x + m + 1 (với m là tham số và m ≠ 2) có đồ thị là đường thẳng d.
a) Khi m = 0, hãy vẽ d trên trục tọa độ Oxy.
b) Tìm m để d cắt đường thẳng y = 2x – 5 tại điểm có hoành độ bằng 2.
c) Tìm m để d cùng với các trục tọa độ Ox, Oy tạo thành một tam giác có diện tích bẳng 2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Khi m = 0 thì d có dạng y = 2x + 1
Bảng giá trị:
x |
–1 |
0 |
1 |
y |
–1 |
1 |
3 |
Ta có đường thẳng d đi qua hai điểm A(0; 1) và \({\rm{B}}\left( {\frac{{ - 1}}{2};0} \right)\)
b) Thay x = 2 vào y = 2x – 5 ta có
y = 2 . 2 – 5 = – 1
Thay x = 2, y = – 1 vào d ta có
– 1 = (2 – m). 2 + m + 1
⇔ – 1 = 4 – 2m + m + 1
⇔ m = 6 (thỏa mãn)
Khi m = 6 thì d có dạng y = – 4x + 7 cắt đường thẳng y = 2x – 5
Vậy m = 6 thì d cắt đường thẳng y = 2x – 5 tại điểm có hoành độ bẳng 2.
c) Vì m ≠ 2 nên d cắt Ox tại điểm \({\rm{C}}\left( {\frac{{m + 1}}{{m - 2}};0} \right)\) và cắt Oy tại điểm D(0; m + 1)
Ta có SCOD = \(\frac{1}{2}\left| {\frac{{m + 1}}{{m - 2}}} \right|\left| {m + 1} \right|\)= 2
⇔ (m + 1)2 = 4\(\left| {{\rm{m}} - 2} \right|\)
\( \Leftrightarrow \left[ \begin{array}{l}{\left( {m + 1} \right)^2} = 4(m - 2)\\{\left( {m + 1} \right)^2} = 4(2 - m)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m - 8\\{m^2} + 2m + 1 = 8 - 4m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 9 = 0\\{m^2} + 6m - 7 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 9 = 0\\(m - 1)(m + 7) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 7\end{array} \right.\)(thỏa mãn)
Vậy m = 1 hoặc m = – 7 thì d cùng với các trục tọa độ Ox, Oy tạo thành một tam giác có diện tích bẳng 2.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.
a) Chứng minh tứ giác MAOB nội tiếp.
b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.
c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).
Câu 2:
Câu 3:
Chứng minh đẳng thức
a) cos4 x – sin4 x = cos2x.
b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.
c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.
Câu 4:
Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) Chứng minh AF // CE
c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.
Câu 5:
Câu 6:
Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = – x2 + 2x + 3;
c) y = – 3x2 + 6x;
d) y = 2x2 – 5.
Câu 7:
Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh
a) \(\widehat {AHO} = \widehat {BCI}\)
b) AH . IC = HI . HC = HO . BC
c) Tam giác AHO đồng dạng tam giác BCI
d) AO vuông góc BI.
về câu hỏi!