Câu hỏi:

13/07/2024 2,172

Cho tam giác ABC vuông tại A đường cao AH, I là trung điểm của AB. Lấy K đối xứng với B qua H. Qua A dựng đường thẳng song song với BC cắt HI tại D
a) AKHD là hình gì?
b) Chứng minh tứ giác AHBD là hình chữ nhật
c) Tam giác ABC phải có thêm điều kiện gì để AHBD là hình vuông
d) M là điểm đối xứng với A qua H. Chứng minh AK vuông góc với CM.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét tam giác ABK có I là trung điểm của AB, H là trung điểm của BK

Do đó HI là đường trung bình

Suy ra HI // AK

Xét tứ giác AKHD có HI // AK, AD // HK

Suy ra AKHD là hình bình hành

Vậy AKHD là hình bình hành

b) Vì AKHD là hình bình hành (chứng minh câu a)

Nên AD = HK

Mà BH = HK (giả thiết)

Suy ra AD = BH

Vì AH BC nên \(\widehat {AHB} = 90^\circ \)

Xét tứ giác AHBD có AD = BH, AD // BH (chứng minh trên)

Suy ra AHBD là hình bình hành

\(\widehat {AHB} = 90^\circ \)

Suy ra AHBD là hình chữ nhật

Vậy AHBD là hình chữ nhật

c) Để hình chữ nhật AHBD là hình vuông thì AH = BH

Tam giác ABK vuông tại A (vì AH = BH = HK)

K ≡ C (vì tam giác ABC vuông tại A)

H là trung điểm của BC

tam giác ABC cân tại A

Vậy tam giác ABC vuông cân thì AHBD là hình vuông

d) Xét tứ giác ABMK có hai đường chéo AM và BK cắt nhau tại trung điểm H của mỗi đường

Suy ra ABMK là hình bình hành

Suy ra AB // MK

Mà AB AC

Do đó MK AC

Xét tam giác AMC có MK, CH là hai đường cao

MK cắt CH tại K

Suy ra K là trực tâm tam giác AMC

Do đó AK MC

Vậy AK MC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.

a) Chứng minh tứ giác MAOB nội tiếp.

b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.

c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).

Xem đáp án » 13/07/2024 88,954

Câu 2:

Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và DC. AN và CM lần lượt cắt BD tại E và F. Chứng minh \(\overrightarrow {DE} = \overrightarrow {{\rm{EF}}} = \overrightarrow {FB} \)

Xem đáp án » 13/07/2024 25,382

Câu 3:

Một chiếc cổng hình Parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ ở hai bên như hình vẽ. Biết chiều cao cổng Parabol là 4 m  còn kích thước cửa ở giữa là 3 m × 4 m . Hãy tính khoảng cách giữa 2 điểm A và B.
Media VietJack

Xem đáp án » 13/07/2024 18,914

Câu 4:

Chứng minh đẳng thức

a) cos4 x – sin4 x = cos2x.

b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.

c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.

Xem đáp án » 13/07/2024 17,497

Câu 5:

Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?

b) Chứng minh AF // CE

c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.

Xem đáp án » 13/07/2024 14,525

Câu 6:

Vẽ đồ thị các hàm số sau:

a) y = 2x2 + 4x – 1;

b) y = – x2 + 2x + 3;

c) y = – 3x2 + 6x;

d) y = 2x2 – 5.

Xem đáp án » 13/07/2024 11,497

Câu 7:

Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh

a) \(\widehat {AHO} = \widehat {BCI}\)

b) AH . IC = HI . HC = HO . BC

c) Tam giác AHO đồng dạng tam giác BCI

d) AO vuông góc BI.

Xem đáp án » 13/07/2024 8,769

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store