Câu hỏi:

13/07/2024 2,734

Cho tam giác ABC vuông tại A đường cao AH, I là trung điểm của AB. Lấy K đối xứng với B qua H. Qua A dựng đường thẳng song song với BC cắt HI tại D
a) AKHD là hình gì?
b) Chứng minh tứ giác AHBD là hình chữ nhật
c) Tam giác ABC phải có thêm điều kiện gì để AHBD là hình vuông
d) M là điểm đối xứng với A qua H. Chứng minh AK vuông góc với CM.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét tam giác ABK có I là trung điểm của AB, H là trung điểm của BK

Do đó HI là đường trung bình

Suy ra HI // AK

Xét tứ giác AKHD có HI // AK, AD // HK

Suy ra AKHD là hình bình hành

Vậy AKHD là hình bình hành

b) Vì AKHD là hình bình hành (chứng minh câu a)

Nên AD = HK

Mà BH = HK (giả thiết)

Suy ra AD = BH

Vì AH BC nên \(\widehat {AHB} = 90^\circ \)

Xét tứ giác AHBD có AD = BH, AD // BH (chứng minh trên)

Suy ra AHBD là hình bình hành

\(\widehat {AHB} = 90^\circ \)

Suy ra AHBD là hình chữ nhật

Vậy AHBD là hình chữ nhật

c) Để hình chữ nhật AHBD là hình vuông thì AH = BH

Tam giác ABK vuông tại A (vì AH = BH = HK)

K ≡ C (vì tam giác ABC vuông tại A)

H là trung điểm của BC

tam giác ABC cân tại A

Vậy tam giác ABC vuông cân thì AHBD là hình vuông

d) Xét tứ giác ABMK có hai đường chéo AM và BK cắt nhau tại trung điểm H của mỗi đường

Suy ra ABMK là hình bình hành

Suy ra AB // MK

Mà AB AC

Do đó MK AC

Xét tam giác AMC có MK, CH là hai đường cao

MK cắt CH tại K

Suy ra K là trực tâm tam giác AMC

Do đó AK MC

Vậy AK MC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Vì MA, MB là tiếp tuyến của (O)  cắt nhau tại M

Nên MA OA, MB OB, MA = MB

Suy ra \(\widehat {OAM} = \widehat {OBM} = 90^\circ \)

Xét tứ giác AMBO có \(\widehat {OAM} + \widehat {OBM} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác AMBO nội tiếp

Vậy tứ giác AMBO nội tiếp .

b) Xét (O) có \(\widehat {CBM}\) là góc tạo bởi tiếp tuyến và dây cung BC

\(\widehat {B{\rm{D}}M}\) là góc nội tiếp chắn cung BC

Suy ra \(\widehat {CBM} = \widehat {MDB}\)

Xét tam giác MBC và tam giác MDB có

\(\widehat {CBM} = \widehat {MDB}\)

\(\widehat {BMD}\) là góc chung

Suy ra (g.g)

Do đó \(\frac{{{\rm{MB}}}}{{{\rm{MD}}}} = \frac{{{\rm{MC}}}}{{{\rm{MB}}}}\)

Suy ra MC . MD = MB2

Mà MA = MB (chứng minh câu a)

Suy ra MC . MD = MA2                       (1)

Vì MA = MB nên M thuộc trung trực của AB

Vì OA = OB nên O thuộc trung trực của AB

Suy ra MO là trung trực của AB

Do đó MO AB

Xét tam giác MAO vuông tại A có MO AH

Suy ra MH . MO = MA2 (hệ thức lượng trong tam giác vuông)                    (2)

Từ (1) và (2) suy ra MC . MD = MH . MO

c) Vì MC . MD = MH . MO nên \(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\)

Xét tam giác MCH và tam giác MOD có

\(\widehat {OMD}\) là góc chung

\(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\) (chứng minh trên)

Suy ra (c.g.c)

Do đó \(\widehat {MHC} = \widehat {MDO}\) (hai góc tương ứng)

\(\widehat {MHC} + \widehat {OHC} = 180^\circ \)

Suy ra \(\widehat {MDO} + \widehat {OHC} = 180^\circ \)

Do đó tứ giác CHOD nội tiếp

Suy ra \(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\)

Vì OC = OD nên tam giác OCD cân tại O

Suy ra \(\widehat {O{\rm{DC}}} = \widehat {OC{\rm{D}}}\)

\(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\) nên \(\widehat {O{\rm{DC}}} = \widehat {OH{\rm{D}}}\)

Lại có \(\widehat {MHC} = \widehat {CDO}\) (chứng minh trên)

Suy ra \(\widehat {MHC} = \widehat {OH{\rm{D}}}\)

Suy ra \(90^\circ - \widehat {MHC} = 90^\circ - \widehat {OH{\rm{D}}}\)

Hay \(\widehat {BHC} = \widehat {BH{\rm{D}}}\)

\(\widehat {BHC} + \widehat {BH{\rm{D}}} = \widehat {CH{\rm{D}}}\)

Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \widehat {CHB}\)

Xét tam giác COD cân tại O có OK là trung tuyến

Suy ra OK là phân giác của góc COD

Do đó \(\frac{{\widehat {{\rm{COD}}}}}{2} = \widehat {{\rm{COK}}}\)

Xét (O) có \(\widehat {CH{\rm{D}}},\widehat {{\rm{ COD}}}\)cùng chắn cung CD

Suy ra \(\widehat {CH{\rm{D}}} = \widehat {{\rm{COD}}}\)

Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \frac{{\widehat {{\rm{COD}}}}}{2}\)

Do đó \(\widehat {CHB} = \widehat {{\rm{COE}}}\)

Xét tứ giác CHOE có \(\widehat {CHE} = \widehat {{\rm{COE}}}\)

\(\widehat {CHE},\widehat {{\rm{COE}}}\) cùng chắn cung CE

Suy ra tứ giác CHOE nội tiếp

Suy ra \(\widehat {OHE} = \widehat {{\rm{OCE}}}\) (vì cùng chắn cung OE)

\(\widehat {OHE} = {\rm{90}}^\circ \)

Nên \(\widehat {OCE} = {\rm{90}}^\circ \)

Hay OC CE

Xét (O) có OC CE, OC là bán kính

Suy ra EC là tiếp tuyến của (O)

Vậy EC là tiếp tuyến của (O).

Lời giải

Lời giải

Media VietJack

Gắn hệ trục tọa độ Oxy như hình vẽ, chiếc cổng là một phần của Parabol (P): y = ax2 + bx + c với a < 0

Do parabol (P) đối xứng ua trục tung nên có trục đối xứng x = 0

Suy ra \( - \frac{b}{{2{\rm{a}}}} = 0 \Leftrightarrow b = 0\)

Chiều cao của cổng parabol là 4 nên G(0; 4)

Suy ra c = 4

Do đó (P): y = ax2 + 4

Vì kích thước cửa ở giữa là 3 x 4 nên E(2; 3), F(– 2; 3)

Suy ra 3 = 4a + 4

Suy ra a = \( - \frac{1}{4}\)

Do đó (P): y = \( - \frac{1}{4}\)x2 + 4

Ta có \( - \frac{1}{4}\)x2 + 4 = 0

\( \Leftrightarrow {x^2} = 16 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\)

Suy ra A(– 4; 0) và B(4; 0)

Do đó AB = 8 (m)

Vậy AB = 8 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay