Câu hỏi:
13/07/2024 1,808Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét tam giác ABK có I là trung điểm của AB, H là trung điểm của BK
Do đó HI là đường trung bình
Suy ra HI // AK
Xét tứ giác AKHD có HI // AK, AD // HK
Suy ra AKHD là hình bình hành
Vậy AKHD là hình bình hành
b) Vì AKHD là hình bình hành (chứng minh câu a)
Nên AD = HK
Mà BH = HK (giả thiết)
Suy ra AD = BH
Vì AH ⊥ BC nên \(\widehat {AHB} = 90^\circ \)
Xét tứ giác AHBD có AD = BH, AD // BH (chứng minh trên)
Suy ra AHBD là hình bình hành
Mà \(\widehat {AHB} = 90^\circ \)
Suy ra AHBD là hình chữ nhật
Vậy AHBD là hình chữ nhật
c) Để hình chữ nhật AHBD là hình vuông thì AH = BH
⟺ Tam giác ABK vuông tại A (vì AH = BH = HK)
⟺ K ≡ C (vì tam giác ABC vuông tại A)
⟺ H là trung điểm của BC
⟺ tam giác ABC cân tại A
Vậy tam giác ABC vuông cân thì AHBD là hình vuông
d) Xét tứ giác ABMK có hai đường chéo AM và BK cắt nhau tại trung điểm H của mỗi đường
Suy ra ABMK là hình bình hành
Suy ra AB // MK
Mà AB ⊥ AC
Do đó MK ⊥ AC
Xét tam giác AMC có MK, CH là hai đường cao
MK cắt CH tại K
Suy ra K là trực tâm tam giác AMC
Do đó AK ⊥ MC
Vậy AK ⊥ MC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.
a) Chứng minh tứ giác MAOB nội tiếp.
b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.
c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).
Câu 2:
Câu 3:
Chứng minh đẳng thức
a) cos4 x – sin4 x = cos2x.
b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.
c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.
Câu 4:
Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) Chứng minh AF // CE
c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.
Câu 5:
Câu 6:
Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = – x2 + 2x + 3;
c) y = – 3x2 + 6x;
d) y = 2x2 – 5.
Câu 7:
Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh
a) \(\widehat {AHO} = \widehat {BCI}\)
b) AH . IC = HI . HC = HO . BC
c) Tam giác AHO đồng dạng tam giác BCI
d) AO vuông góc BI.
về câu hỏi!