Câu hỏi:
26/03/2023 670Cho đường tròn (O; R) đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao
điểm của CO và AD là I.
a) Chứng minh: CO ⊥ AD.
b) Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B). Chứng minh CE . CB = CI . CO.
c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi
điểm C di chuyển trên Ax.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Vì C là giao điểm của 2 tiếp tuyến CA và CD
Nên CA = CD
Suy ra C thuộc đường trung trực của AD (1)
Vì A, D cùng thuộc (O) nên OA = OD
Suy ra O thuộc đường trung trực của AD (2)
Từ (1) và (2) suy ra CO ⊥ AD
b) Xét tam giác vuông ACO có CO ⊥ AI
Suy ra CI . CO = AC2 (hệ thức lượng trong tam giác vuông)
Vì tam giác AEB nội tiếp (O), AB là đường kính
Nên tam giác AEB vuông tại E
Suy ra AE ⊥ BE
Xét tam giác vuông ACB có AE ⊥ BC
Suy ra CE . CB = AC2 (hệ thức lượng trong tam giác vuông)
Mà CI . CO = AC2 (chứng minh trên)
Suy ra CE . CB = CI . CO
Vậy CE . CB = CI . CO
c) Vì H là trực tâm tam giác ACD nên AH ⊥ CD, AC ⊥ DH, CH ⊥ AD
Vì AC ⊥ DH, AC ⊥ AB nên DH // AB
Vì AH ⊥ CD, DO ⊥ CD nên AH // DO
Xét tứ giác AHDO có AH // DO, DH // AO (chứng minh trên)
Suy ra AHDO là hình bình hành
Mà AD cắt HO tại I
Do đó I là trung điểm của HO
Trên tia đối của tia AO lấy G sao cho GA = AO
Xét tam giác GHO có A là trung điểm của OG, I là trung điểm của HO
Nên AI là đường trung bình
Suy ra AI // GH
Mà AI ⊥ CO nên GH ⊥ CO
Suy ra \(\widehat {OHG} = 90^\circ \)
Do đó H thuộc đường tròn đường kính OG
Vậy khi C di chuyển trên Ax thì H di chuyển trên đường tròn tâm A bán bính AO cố định.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.
a) Chứng minh tứ giác MAOB nội tiếp.
b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.
c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).
Câu 2:
Câu 3:
Chứng minh đẳng thức
a) cos4 x – sin4 x = cos2x.
b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.
c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.
Câu 4:
Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) Chứng minh AF // CE
c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.
Câu 5:
Câu 6:
Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = – x2 + 2x + 3;
c) y = – 3x2 + 6x;
d) y = 2x2 – 5.
Câu 7:
Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh
a) \(\widehat {AHO} = \widehat {BCI}\)
b) AH . IC = HI . HC = HO . BC
c) Tam giác AHO đồng dạng tam giác BCI
d) AO vuông góc BI.
về câu hỏi!