Câu hỏi:
13/07/2024 3,636Cho đường tròn (O; R), đường kính AB. Kẻ tiếp tuyến Ax với đường tròn tại A. Lấy điểm M thuộc tia Ax, kẻ tiếp tuyến MC với đường tròn (O) tại C (C khác A). Tiếp tuyến của đường tròn tại B cắt AC tại D và cắt MC tại F. Nối OM cắt AC tại E
a) Chứng minh tứ giác OBDE nội tiếp.
b) Chứng minh AC. AD = 4R2.
c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp ΔMOF.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét (O) có MA, MC là hai tiếp tuyến cắt nhau tại M
Suy ra MA = MC
Hay M thuộc trung trực của AC (1)
Vì A, D cùng thuộc (O) nên OA = OD
Suy ra O thuộc đường trung trực của AC (2)
Từ (1) và (2) suy ra MO ⊥ AC
Suy ra \(\widehat {OEC} = 90^\circ \)
Vì BD là tiếp tuyến của (O) nên BD ⊥ BO
Suy ra \(\widehat {OB{\rm{D}}} = 90^\circ \)
Xét tứ giác OBDE có \(\widehat {OED} + \widehat {OBD} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác OBDE nội tiếp
Vậy tứ giác OBDE nội tiếp
b) Vì tam giác ABC nội tiếp (O) đường kính AB
Nên tam giác ABC vuông tại C
Suy ra AC ⊥ BC
Xét tam giác ABD vuông tại B có BC ⊥ AD
Suy ra AC. AD = AB2 (hệ thức lượng trong tam giác vuông)
Mà AB = 2R
Suy ra AC . AD = 4R2
Vậy AC . AD = 4R2
c) Xét (O) có MA, MC là hai tiếp tuyến cắt nhau tại M
Suy ra OM là phân giác của góc AOC, MO là phân giác của góc AMC
Do đó \(\widehat {COM} = \frac{1}{2}\widehat {COA}\), \(\widehat {OMA} = \widehat {CMO}\)
Xét (O) có FC, FB là hai tiếp tuyến cắt nhau tại F
Suy ra OF là phân giác của góc BOC
Do đó \(\widehat {COF} = \frac{1}{2}\widehat {COB}\)
Khi đó :
Suy ra tam giác MFO vuông tại O
Do đó tâm đường tròn ngoại tiếp tam giác MOF là trung điểm I của MF
Xét tam giác MFO vuông tại O có OI là trung tuyến
Suy ra IO = IM = IF
Do đó tam giác IMO cân tại I
Suy ra \(\widehat {I{\rm{O}}M} = \widehat {IM{\rm{O}}}\)
Mà \(\widehat {AMO} = \widehat {IM{\rm{O}}}\) (chứng minh câu trên)
Suy ra \(\widehat {AMO} = \widehat {I{\rm{OM}}}\)
Vì tam giác AMO vuông tại A nên \(\widehat {AMO} + \widehat {{\rm{AOM}}} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)
Hay \(\widehat {MOI} + \widehat {{\rm{AOM}}} = 90^\circ \)
Suy ra \(\widehat {AOI} = 90^\circ \)
Do đó AO ⊥ OI
Xét (I; IO) có AB ⊥ OI
Suy ra AB là tiếp tuyến
Vậy AB là tiếp tuyến của đường tròn ngoại tiếp tam giác MOF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.
a) Chứng minh tứ giác MAOB nội tiếp.
b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.
c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).
Câu 2:
Câu 3:
Câu 4:
Chứng minh đẳng thức
a) cos4 x – sin4 x = cos2x.
b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.
c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.
Câu 5:
Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) Chứng minh AF // CE
c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.
Câu 6:
Vẽ đồ thị các hàm số sau:
a) y = 2x2 + 4x – 1;
b) y = – x2 + 2x + 3;
c) y = – 3x2 + 6x;
d) y = 2x2 – 5.
Câu 7:
Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh
a) \(\widehat {AHO} = \widehat {BCI}\)
b) AH . IC = HI . HC = HO . BC
c) Tam giác AHO đồng dạng tam giác BCI
d) AO vuông góc BI.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức cơ bản, nâng cao có lời giải (P1)
về câu hỏi!