Câu hỏi:

13/07/2024 1,318

Cho tam giác ABC cân tại A, góc A bé hơn 90°. Kẻ AB vuông góc AC. Trên AB lấy E sao cho AE bằng AD. Chứng minh rằng:

a) DE song song BC.

b) CE vuông góc AB.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì tam giác ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\)

Xét tam giác ABC có \(\widehat {ABC} + \widehat {ACB} + \widehat {BAC} = 180^\circ \)(tổng ba góc trong một tam giác)

\(\widehat {ABC} = \widehat {ACB}\) (chứng minh trên)

Suy ra \(\widehat {ABC} = \frac{{180^\circ - \widehat {BAC}}}{2}\)                            (1)

Vì AE = AD nên tam giác AED cân tại A

Suy ra \(\widehat {ADE} = \widehat {AE{\rm{D}}}\)

Xét tam giác ADE có \(\widehat {ADE} + \widehat {AE{\rm{D}}} + \widehat {DA{\rm{E}}} = 180^\circ \)(tổng ba góc trong một tam giác)

\(\widehat {ADE} = \widehat {AE{\rm{D}}}\) (chứng minh trên)

Suy ra \(\widehat {AE{\rm{D}}} = \frac{{180^\circ - \widehat {BAC}}}{2}\)                       (2)

Từ (1) và (2) suy ra \(\widehat {ABC} = \widehat {AE{\rm{D}}}\)

Mà hai góc này ở vị trí đồng vị

Suy ra ED // BC

Vậy ED // BC.

b) Xét tam giác ABD và tam giác ACE có

AB = AC (chứng minh câu a)

\(\widehat A\)là góc chung

AE = AD (giả thiết)

Do đó ABD = ACE (c.g.c)

Suy ra \(\widehat {AEC} = \widehat {ADB}\) (hai góc tương ứng)

\(\widehat {ADB} = 90^\circ \) (vì AD BC)

Nên \(\widehat {AEC} = 90^\circ \)

Hay CE BA

Vậy CE BA.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.

a) Chứng minh tứ giác MAOB nội tiếp.

b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.

c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).

Xem đáp án » 13/07/2024 127,344

Câu 2:

Một chiếc cổng hình Parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ ở hai bên như hình vẽ. Biết chiều cao cổng Parabol là 4 m  còn kích thước cửa ở giữa là 3 m × 4 m . Hãy tính khoảng cách giữa 2 điểm A và B.
Media VietJack

Xem đáp án » 13/07/2024 29,833

Câu 3:

Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và DC. AN và CM lần lượt cắt BD tại E và F. Chứng minh \(\overrightarrow {DE} = \overrightarrow {{\rm{EF}}} = \overrightarrow {FB} \)

Xem đáp án » 13/07/2024 26,775

Câu 4:

Chứng minh đẳng thức

a) cos4 x – sin4 x = cos2x.

b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.

c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.

Xem đáp án » 13/07/2024 18,990

Câu 5:

Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?

b) Chứng minh AF // CE

c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.

Xem đáp án » 13/07/2024 15,459

Câu 6:

Vẽ đồ thị các hàm số sau:

a) y = 2x2 + 4x – 1;

b) y = – x2 + 2x + 3;

c) y = – 3x2 + 6x;

d) y = 2x2 – 5.

Xem đáp án » 13/07/2024 14,746

Câu 7:

Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh

a) \(\widehat {AHO} = \widehat {BCI}\)

b) AH . IC = HI . HC = HO . BC

c) Tam giác AHO đồng dạng tam giác BCI

d) AO vuông góc BI.

Xem đáp án » 13/07/2024 12,557