Cho tam giác ABC có \(\widehat A\) > 90°, kẻ AD vuông góc với AB, AD = AB (tia AD nằm giữa hai tia AB và AC), kẻ AE vuông góc với AC, AE = AC (tia AE nằm giữa hai tia AB, AC). Kẻ AH vuông góc với BC, AH kéo dài cắt DE tại M.
a) Chứng minh hai tam giác ABE; ADC bằng nhau và BE vuông góc với DC.
b) Từ D kẻ DP vuông góc với AM, từ E kẻ EQ vuông góc với AM. Chứng minh
DP = AH.
c) Chứng minh M là trung điểm của đoạn thẳng DE
d) Giả sử EQ = 3 cm; AQ = 4 cm. Từ Q hạ QI vuông góc với AE. Tính độ dài đoạn
thẳng AI; IE.
Cho tam giác ABC có \(\widehat A\) > 90°, kẻ AD vuông góc với AB, AD = AB (tia AD nằm giữa hai tia AB và AC), kẻ AE vuông góc với AC, AE = AC (tia AE nằm giữa hai tia AB, AC). Kẻ AH vuông góc với BC, AH kéo dài cắt DE tại M.
a) Chứng minh hai tam giác ABE; ADC bằng nhau và BE vuông góc với DC.
b) Từ D kẻ DP vuông góc với AM, từ E kẻ EQ vuông góc với AM. Chứng minh
DP = AH.
c) Chứng minh M là trung điểm của đoạn thẳng DE
d) Giả sử EQ = 3 cm; AQ = 4 cm. Từ Q hạ QI vuông góc với AE. Tính độ dài đoạn
thẳng AI; IE.
Quảng cáo
Trả lời:
Lời giải
a) Ta có \(\widehat {BAE} + \widehat {EAD} = \widehat {BAD} = 90^\circ \)
\(\widehat {CA{\rm{D}}} + \widehat {EAD} = \widehat {CAE} = 90^\circ \)
Suy ra \(\widehat {BA{\rm{E}}} = \widehat {CAD}\)
Xét tam giác ABE và tam giác ADC có
AB = AD (giả thiết)
\(\widehat {BA{\rm{E}}} = \widehat {CAD}\)(chứng minh trên)
AC = AE (giả thiết)
Suy ra △ ABE = △ ADC (c.g.c)
Do đó \(\widehat {BEA} = \widehat {ACD}\)
Vì tam giác AEC vuông cân tại A
Nên \(\widehat {CEA} = \widehat {ACE} = \frac{{90^\circ }}{2} = 45^\circ \)
Mà \(\widehat {BEA} = \widehat {ACD}\)
Suy ra \(\widehat {BEA} = \widehat {AEC} = 45^\circ \)
Suy ra \(\widehat {BEA} + \widehat {AEC} = \widehat {BEC} = 45^\circ + 45^\circ = 90^\circ \)
Hay BE ⊥ DC
b) Ta có \(\widehat {BAH} + \widehat {HAD} = \widehat {BAD} = 90^\circ \)
Vì tam giác ABH vuông tại H nên \(\widehat {BAH} + \widehat {HBA} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {DAH} = \widehat {HBA}\)
Vì tam giác ADP vuông tại H nên \(\widehat {PA{\rm{D}}} + \widehat {P{\rm{D}}A} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {BAH} = \widehat {P{\rm{D}}A}\)
Xét tam giác ABH và tam giác DAP có
\(\widehat {DAH} = \widehat {HBA}\) (chứng minh trên)
AB = AD (giả thiết)
\(\widehat {BAH} = \widehat {P{\rm{D}}A}\)(chứng minh trên)
Suy ra △ ABH = △ DAP (g.c.g)
Do đó AH = DP (hai góc tương ứng)
Vậy AH = DP.
c) Ta có \(\widehat {EAQ} + \widehat {CAQ} = \widehat {EAC} = 90^\circ \)
Vì tam giác AEQ vuông tại Q nên \(\widehat {QAE} + \widehat {QEA} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {CAQ} = \widehat {QEA}\)
Xét tam giác AEQ và tam giác CAH có
\(\widehat {AQE} = \widehat {CHA}\left( { = 90^\circ } \right)\)
AE = AC (giả thiết)
\(\widehat {CAQ} = \widehat {QEA}\) (chứng minh trên)
Suy ra △ AEQ = △ CAH (cạnh huyển – góc nhọn)
Do đó AH = EQ (hai góc tương ứng)
Mà AH = DP (chứng minh câu b)
Suy ra EQ = DP
Ta có EQ ⊥ AM, DP ⊥ AM
Suy ra EQ // PD
Xét tứ giác EQDP có EQ // PD, EQ = DP
Suy ra EQDP là hình bình hành
Mà DE cắt PQ ở M
Suy ra M là trung điểm của DE
Vậy M là trung điểm của DE.
d) Vì tam giác AQE vuông ở Q nên AE2 = EQ2 + AQ2
Hay AE2 = 32 + 42 = 9 + 16 = 25
Suy ra AE = 5
Xét tam giác AEQ vuông tại Q có QI ⊥ AE
Suy ra EQ2 = EI . EA (hệ thức lượng trong tam giác vuông)
Hay 32 = EI . 5
Suy ra EI = 1,8
Ta có AI = AE – EI = 5 – 1,8 = 3,2
Vậy EI = 1,8 cm và AI = 3,2 cm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Vì MA, MB là tiếp tuyến của (O) cắt nhau tại M
Nên MA ⊥ OA, MB ⊥ OB, MA = MB
Suy ra \(\widehat {OAM} = \widehat {OBM} = 90^\circ \)
Xét tứ giác AMBO có \(\widehat {OAM} + \widehat {OBM} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác AMBO nội tiếp
Vậy tứ giác AMBO nội tiếp .
b) Xét (O) có \(\widehat {CBM}\) là góc tạo bởi tiếp tuyến và dây cung BC
\(\widehat {B{\rm{D}}M}\) là góc nội tiếp chắn cung BC
Suy ra \(\widehat {CBM} = \widehat {MDB}\)
Xét tam giác MBC và tam giác MDB có
\(\widehat {CBM} = \widehat {MDB}\)
\(\widehat {BMD}\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{{\rm{MB}}}}{{{\rm{MD}}}} = \frac{{{\rm{MC}}}}{{{\rm{MB}}}}\)
Suy ra MC . MD = MB2
Mà MA = MB (chứng minh câu a)
Suy ra MC . MD = MA2 (1)
Vì MA = MB nên M thuộc trung trực của AB
Vì OA = OB nên O thuộc trung trực của AB
Suy ra MO là trung trực của AB
Do đó MO ⊥ AB
Xét tam giác MAO vuông tại A có MO ⊥ AH
Suy ra MH . MO = MA2 (hệ thức lượng trong tam giác vuông) (2)
Từ (1) và (2) suy ra MC . MD = MH . MO
c) Vì MC . MD = MH . MO nên \(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\)
Xét tam giác MCH và tam giác MOD có
\(\widehat {OMD}\) là góc chung
\(\frac{{MC}}{{MO}} = \frac{{MH}}{{M{\rm{D}}}}\) (chứng minh trên)
Suy ra (c.g.c)
Do đó \(\widehat {MHC} = \widehat {MDO}\) (hai góc tương ứng)
Mà \(\widehat {MHC} + \widehat {OHC} = 180^\circ \)
Suy ra \(\widehat {MDO} + \widehat {OHC} = 180^\circ \)
Do đó tứ giác CHOD nội tiếp
Suy ra \(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\)
Vì OC = OD nên tam giác OCD cân tại O
Suy ra \(\widehat {O{\rm{DC}}} = \widehat {OC{\rm{D}}}\)
Mà \(\widehat {OH{\rm{D}}} = \widehat {OC{\rm{D}}}\) nên \(\widehat {O{\rm{DC}}} = \widehat {OH{\rm{D}}}\)
Lại có \(\widehat {MHC} = \widehat {CDO}\) (chứng minh trên)
Suy ra \(\widehat {MHC} = \widehat {OH{\rm{D}}}\)
Suy ra \(90^\circ - \widehat {MHC} = 90^\circ - \widehat {OH{\rm{D}}}\)
Hay \(\widehat {BHC} = \widehat {BH{\rm{D}}}\)
Mà \(\widehat {BHC} + \widehat {BH{\rm{D}}} = \widehat {CH{\rm{D}}}\)
Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \widehat {CHB}\)
Xét tam giác COD cân tại O có OK là trung tuyến
Suy ra OK là phân giác của góc COD
Do đó \(\frac{{\widehat {{\rm{COD}}}}}{2} = \widehat {{\rm{COK}}}\)
Xét (O) có \(\widehat {CH{\rm{D}}},\widehat {{\rm{ COD}}}\)cùng chắn cung CD
Suy ra \(\widehat {CH{\rm{D}}} = \widehat {{\rm{COD}}}\)
Suy ra \(\frac{{\widehat {CH{\rm{D}}}}}{2} = \frac{{\widehat {{\rm{COD}}}}}{2}\)
Do đó \(\widehat {CHB} = \widehat {{\rm{COE}}}\)
Xét tứ giác CHOE có \(\widehat {CHE} = \widehat {{\rm{COE}}}\)
\(\widehat {CHE},\widehat {{\rm{COE}}}\) cùng chắn cung CE
Suy ra tứ giác CHOE nội tiếp
Suy ra \(\widehat {OHE} = \widehat {{\rm{OCE}}}\) (vì cùng chắn cung OE)
Mà \(\widehat {OHE} = {\rm{90}}^\circ \)
Nên \(\widehat {OCE} = {\rm{90}}^\circ \)
Hay OC ⊥ CE
Xét (O) có OC ⊥ CE, OC là bán kính
Suy ra EC là tiếp tuyến của (O)
Vậy EC là tiếp tuyến của (O).
Lời giải
Lời giải
Gắn hệ trục tọa độ Oxy như hình vẽ, chiếc cổng là một phần của Parabol (P): y = ax2 + bx + c với a < 0
Do parabol (P) đối xứng ua trục tung nên có trục đối xứng x = 0
Suy ra \( - \frac{b}{{2{\rm{a}}}} = 0 \Leftrightarrow b = 0\)
Chiều cao của cổng parabol là 4 nên G(0; 4)
Suy ra c = 4
Do đó (P): y = ax2 + 4
Vì kích thước cửa ở giữa là 3 x 4 nên E(2; 3), F(– 2; 3)
Suy ra 3 = 4a + 4
Suy ra a = \( - \frac{1}{4}\)
Do đó (P): y = \( - \frac{1}{4}\)x2 + 4
Ta có \( - \frac{1}{4}\)x2 + 4 = 0
\( \Leftrightarrow {x^2} = 16 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\)
Suy ra A(– 4; 0) và B(4; 0)
Do đó AB = 8 (m)
Vậy AB = 8 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.