Câu hỏi:

26/03/2023 7,278

Cho tam giác ABC đều cạnh 2a, d là đường thẳng qua A và song song BC, khi M di động trên d thì giá trị nhỏ nhất của \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) là:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là A

Media VietJack

Gọi K là trung điểm của AC

Vì tam giác ABC đều nên BK là tia phân giác của góc ABC, \(\widehat {ABC} = 60^\circ \)

Suy ra \(\widehat {ABK} = 30^\circ \)

Xét tam giác ABC đều cạnh 2a có K là trung điểm của AC

Nên BK là đường cao, AB = 2a, AK = a

Suy ra tam giác ABK vuông tại K

Do đó AB2 = BK2 + AK2

Hay (2a)2 = BK2 + a2

Suy ra BK = a\(\sqrt 3 \)

Xét điểm I sao cho \(\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {IA} + 2(\overrightarrow {IA} + \overrightarrow {AB} ) - (\overrightarrow {IA} + \overrightarrow {AC} ) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {IA} + 2\overrightarrow {IA} + 2\overrightarrow {AB} - \overrightarrow {IA} - \overrightarrow {AC} = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {IA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {IA} + \overrightarrow {AB} + \overrightarrow {CB} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {IA} = \frac{{\overrightarrow {BA} + \overrightarrow {BC} }}{2}\)

\( \Leftrightarrow \overrightarrow {IA} = \overrightarrow {BK} \)

Suy ra I là đỉnh thứ 4 của hình bình hành AIBK

Do đó AI // BK, AI = BK

Suy ra \(\widehat {IAB} = \widehat {ABK}\) (hai góc so le trong)

Mà \(\widehat {ABK} = 30^\circ \) nên \(\widehat {IAB} = 30^\circ \)

Ta có: \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) = \(\left| {(\overrightarrow {MI} + \overrightarrow {IA} ) + 2(\overrightarrow {MI} + \overrightarrow {IB} ) - (\overrightarrow {MI} + \overrightarrow {IC} )} \right|\)

= \(\left| {2\overrightarrow {MI} + (\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} )} \right|\) = \(\left| {2\overrightarrow {MI} } \right|\) = 2MI

Vì M d nên \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất khi MI d

Khi đó \(\widehat {MAI} = \widehat {MAB} - \widehat {IAB} = 60^\circ - 30^\circ = 30^\circ \)

Xét tam giác AMI vuông tại M có

IM = IA. sin\(\widehat {MAI}\)= BK. sin 30° = \(\frac{{BK}}{2}\)= \(\frac{{a\sqrt 3 }}{2}\)

Suy ra \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) = 2IM = \(a\sqrt 3 \)

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.

a) Chứng minh tứ giác MAOB nội tiếp.

b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.

c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).

Xem đáp án » 13/07/2024 98,772

Câu 2:

Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và DC. AN và CM lần lượt cắt BD tại E và F. Chứng minh \(\overrightarrow {DE} = \overrightarrow {{\rm{EF}}} = \overrightarrow {FB} \)

Xem đáp án » 13/07/2024 26,140

Câu 3:

Một chiếc cổng hình Parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ ở hai bên như hình vẽ. Biết chiều cao cổng Parabol là 4 m  còn kích thước cửa ở giữa là 3 m × 4 m . Hãy tính khoảng cách giữa 2 điểm A và B.
Media VietJack

Xem đáp án » 13/07/2024 21,842

Câu 4:

Chứng minh đẳng thức

a) cos4 x – sin4 x = cos2x.

b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.

c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.

Xem đáp án » 13/07/2024 18,198

Câu 5:

Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?

b) Chứng minh AF // CE

c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.

Xem đáp án » 13/07/2024 14,929

Câu 6:

Vẽ đồ thị các hàm số sau:

a) y = 2x2 + 4x – 1;

b) y = – x2 + 2x + 3;

c) y = – 3x2 + 6x;

d) y = 2x2 – 5.

Xem đáp án » 13/07/2024 12,790

Câu 7:

Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh

a) \(\widehat {AHO} = \widehat {BCI}\)

b) AH . IC = HI . HC = HO . BC

c) Tam giác AHO đồng dạng tam giác BCI

d) AO vuông góc BI.

Xem đáp án » 13/07/2024 9,588

Bình luận


Bình luận