Câu hỏi:

13/07/2024 6,121

Cho tam giác ABC. Hãy xác định các điểm I, J, K, L thỏa mãn các đẳng thức sau:

a) \(2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \)

b) \(2\overrightarrow {J{\rm{A}}} + \overrightarrow {JC} - \overrightarrow {JB} = \overrightarrow {CA} \)

c) \(\overrightarrow {{\rm{KA}}} + \overrightarrow {KB} + \overrightarrow {KC} = 2\overrightarrow {BC} \)

d) \(3\overrightarrow {{\rm{LA}}} + 2\overrightarrow {LC} - \overrightarrow {LB} = \overrightarrow 0 \)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Ta có \(2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \)

Suy ra I thuộc đoạn thẳng BC sao cho \(\frac{{IB}}{{IC}} = \frac{3}{2}\)

b) Ta có \(2\overrightarrow {J{\rm{A}}} + \overrightarrow {JC} - \overrightarrow {JB} = \overrightarrow {CA} \)

\( \Leftrightarrow 2\overrightarrow {J{\rm{A}}} + \overrightarrow {JC} - \overrightarrow {JB} = \overrightarrow {JA} - \overrightarrow {JC} \)

\( \Leftrightarrow \overrightarrow {J{\rm{A}}} + 2\overrightarrow {JC} - \overrightarrow {JB} = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {JC} = \overrightarrow {AB} \)

Suy ra JC // AB, JC = \(\frac{1}{2}\)AB

Vậy điểm I thuộc đường thẳng qua C song song với AB sao cho JC = \(\frac{1}{2}\)AB.

c) Gọi G là trọng tâm tam giác ABC

Suy ra \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

Ta có: \(\overrightarrow {{\rm{KA}}} + \overrightarrow {KB} + \overrightarrow {KC} = 2\overrightarrow {BC} \)

\( \Leftrightarrow \overrightarrow {{\rm{KG}}} + \overrightarrow {GA} + \overrightarrow {KG} + \overrightarrow {GB} + \overrightarrow {KG} + \overrightarrow {GC} = 2\overrightarrow {BC} \)

\( \Leftrightarrow 3\overrightarrow {{\rm{KG}}} + (\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} ) = 2\overrightarrow {BC} \)

\( \Leftrightarrow 3\overrightarrow {{\rm{KG}}} = 2\overrightarrow {BC} \)

\( \Leftrightarrow \overrightarrow {{\rm{KG}}} = \frac{2}{3}\overrightarrow {BC} \)

Vậy K cách G một khoảng bằng \(\frac{2}{3}\overrightarrow {BC} \).

d) \(3\overrightarrow {{\rm{LA}}} + 2\overrightarrow {LC} - \overrightarrow {LB} = \overrightarrow 0 \)

\( \Leftrightarrow (2\overrightarrow {{\rm{LA}}} + 2\overrightarrow {LC} ) + (\overrightarrow {LA} - \overrightarrow {LB} ) = \overrightarrow 0 \)

\( \Leftrightarrow 2(\overrightarrow {{\rm{LA}}} + \overrightarrow {LC} ) = \overrightarrow {AB} \)

Gọi M là trung điểm của AC

Suy ra \(2(\overrightarrow {{\rm{LM}}} + \overrightarrow {MA} + \overrightarrow {LM} + \overrightarrow {MC} ) = \overrightarrow {AB} \)

\( \Leftrightarrow 4\overrightarrow {LM} = \overrightarrow {AB} \)

\( \Leftrightarrow \overrightarrow {LM} = \frac{1}{4}\overrightarrow {AB} \)

Vậy K cách G một khoảng bằng \(\frac{1}{4}\overrightarrow {AB} \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.

a) Chứng minh tứ giác MAOB nội tiếp.

b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.

c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).

Xem đáp án » 13/07/2024 137,808

Câu 2:

Một chiếc cổng hình Parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ ở hai bên như hình vẽ. Biết chiều cao cổng Parabol là 4 m  còn kích thước cửa ở giữa là 3 m × 4 m . Hãy tính khoảng cách giữa 2 điểm A và B.
Media VietJack

Xem đáp án » 13/07/2024 30,661

Câu 3:

Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và DC. AN và CM lần lượt cắt BD tại E và F. Chứng minh \(\overrightarrow {DE} = \overrightarrow {{\rm{EF}}} = \overrightarrow {FB} \)

Xem đáp án » 13/07/2024 26,847

Câu 4:

Chứng minh đẳng thức

a) cos4 x – sin4 x = cos2x.

b) cos4 x + sin4 x = \(\frac{3}{4} + \frac{1}{4}\)cos 4x.

c) \(\frac{{1 - c{\rm{os2x}}}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\)= tanx.

Xem đáp án » 13/07/2024 19,251

Câu 5:

Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?

b) Chứng minh AF // CE

c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.

Xem đáp án » 13/07/2024 15,612

Câu 6:

Vẽ đồ thị các hàm số sau:

a) y = 2x2 + 4x – 1;

b) y = – x2 + 2x + 3;

c) y = – 3x2 + 6x;

d) y = 2x2 – 5.

Xem đáp án » 13/07/2024 14,965

Câu 7:

Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh

a) \(\widehat {AHO} = \widehat {BCI}\)

b) AH . IC = HI . HC = HO . BC

c) Tam giác AHO đồng dạng tam giác BCI

d) AO vuông góc BI.

Xem đáp án » 13/07/2024 13,887
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua