Câu hỏi:

11/07/2024 439

Cho hàm số \[y = mx + 3\;\left( {{d_1}} \right)\] và \(y = - \frac{x}{m} + 3\;\left( {{d_2}} \right)\). Gọi A là giao điểm của d1 và d2, B và C lần lượt là giao của d1 và d2, với Ox. Tìm m nhỏ nhất để tam giác ABC có diện tích nhỏ nhất.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

• Vì A là giao điểm của d1 và d2 nên hoành độ giao điểm của A là nghiệm của phương trình nên:

\(mx + 3 = - \frac{x}{m} + 3 \Leftrightarrow mx = - \frac{x}{m}\)

\( \Leftrightarrow mx + \frac{x}{m} = 0 \Leftrightarrow x\left( {m + \frac{1}{m}} \right) = 0\)

\( \Rightarrow x = 0\)

Khi đó tọa độ của điểm A là A(0; 3).

• Vì B là giao điểm của d1 và Ox nên hoành độ giao điểm của B là nghiệm của phương trình nên:

mx + 3 = 0 \[ \Leftrightarrow x = - \frac{3}{m}\].

Khi đó, tọa độ của điểm B là \(B\left( { - \frac{3}{m};\;0} \right)\).

• Vì C là giao điểm của d2 và Ox nên hoành độ giao điểm của C là nghiệm của phương trình nên:

\( - \frac{x}{m} + 3 = 0\)\( \Leftrightarrow x = 3m\).

Khi đó, tọa độ của điểm C là C(3m; 0).

Hệ số góc của d1 là m và hệ số góc của d2\( - \frac{1}{m}\)\(m.\left( { - \frac{1}{m}} \right) = - 1\) nên hai đường thẳng d1 và d2 vuông góc với nhau tại A.

Khi đó, tam giác ABC là tam giác vuông tại A và có diện tích là \(\frac{1}{2}AB.AC\).

Ta có: \(AB = \sqrt {{{\left( { - \frac{3}{m}} \right)}^2} + {{\left( { - 3} \right)}^2}} = 3\sqrt {\frac{1}{{{m^2}}} + 1} = 3\sqrt {\frac{{1 + {m^2}}}{{{m^2}}}} \);

\[AC = \sqrt {{{\left( {3m} \right)}^2} + {{\left( { - 3} \right)}^2}} = 3\sqrt {{m^2} + 1} \]

\( \Rightarrow \frac{1}{2}AB.AC = \frac{1}{2} \cdot 3\sqrt {\frac{{1 + {m^2}}}{{{m^2}}}} \cdot 3\sqrt {{m^2} + 1} = \frac{{9\left( {{m^2} + 1} \right)}}{{2\left| m \right|}} = \frac{9}{2}\left( {\left| m \right| + \frac{1}{{\left| m \right|}}} \right)\)

Áp dụng BĐT Cô-si vào 2 số dương \(\left| m \right|\)\(\frac{1}{{\left| m \right|}}\) ta có:

\(\frac{1}{2}AB.AC = \frac{9}{2}\left( {\left| m \right| + \frac{1}{{\left| m \right|}}} \right) \ge \frac{9}{2} \cdot 2\sqrt {\left| m \right| \cdot \frac{1}{{\left| m \right|}}} = 9\)

Dấu “=” xảy ra khi và chỉ khi \(\left| m \right| = \frac{1}{{\left| m \right|}}\)

\( \Leftrightarrow {m^2} = 1 \Leftrightarrow m = \pm 1\)

Vậy giá trị m nhỏ nhất là m = −1 thì diện tích tam giác ABC đạt giá trị nhỏ nhất là 9.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo AC và BD. Qua O vẽ đường thẳng a cắt AD, BC lần lượt tại E, F. Qua O vẽ đường thẳng b cắt AB và CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành.

Xem đáp án » 12/07/2024 43,621

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB, SC.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD)
.
b) Chứng minh đường thẳng BN song song với mặt phẳng (SDM)
.
c) Xác định các điểm I, J lần lượt là giao điểm của đường thẳng AN và đường thẳng MN với mặt phẳng (SBD)
.
d) Tính tỉ số
\(\frac{{IB}}{{IJ}}\).

Xem đáp án » 12/07/2024 35,645

Câu 3:

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.

a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.

b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.

c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.

d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.

Xem đáp án » 11/07/2024 8,690

Câu 4:

Đặt tính rồi tính 155,9 : 45

Xem đáp án » 12/07/2024 7,463

Câu 5:

Cho tam giác ABC có A(−5; 6), B(−4; −1), C(4; 3). Tìm tọa độ trung điểm I của AC. Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 28/03/2023 6,862

Câu 6:

Cho hàm số có đồ thị (C) \(y = \frac{{2x + 1}}{{x - 1}}\) và đường thẳng  d: y = x + m. Đường thẳng d cắt đồ thị (C) tại hai điểm A và B. Với C(−2; 5), giá trị của tham số m để tam giác ABC đều là bao nhiêu?

Xem đáp án » 11/07/2024 6,657

Câu 7:

Cho nửa đường tròn (O), đường kính AB; Ax là tiếp tuyến của nửa đường tròn. Trên nửa đường tròn lấy điểm D (D khác A, B). Tiếp tuyến tại D của (O) cắt Ax ở S.

a) Chứng minh SO // BD.

b) BD cắt AS ở C. Chứng minh SA = SC.

c) Kẻ DH vuông góc với AB; DH cắt BS tại E. Chứng minh E là trung điểm của DH.

Xem đáp án » 12/07/2024 6,656

Bình luận


Bình luận