Câu hỏi:

28/03/2023 1,240

Cho hai đường thẳng \(\left( {{D_1}} \right):y = \frac{1}{2}x + 2\)\(\left( {{D_2}} \right):y = - x + 2\)

Gọi A và B theo thứ tự giao điểm của (D1) và (D2) với các trục hoành, C là giao điểm của hai đường thẳng đó (đơn vị trên các trục tọa độ là centimet).

Khẳng định nào sau đây sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

• Vì A là giao điểm của (D1) với trục hoành nên hoành độ giao điểm của A là nghiệm của phương trình:

\(\frac{1}{2}x + 2 = 0 \Leftrightarrow x = - 4\)

Khi đó, tọa độ của điểm A là A(– 4, 0).

Þ OA = 8 (cm)

• Vì B là giao điểm của (D2) với trục hoành nên hoành độ giao điểm của A là nghiệm của phương trình:

– x + 2 = 0 Û x = 2

Khi đó, tọa độ của điểm B là B(2, 0).

Þ OB = 2 (cm)

• Vì C là giao điểm của hai đường thẳng (D1) và (D2) nên hoành độ giao điểm của C là nghiệm của phương trình:

\(\frac{1}{2}x + 2 = - x + 2 \Leftrightarrow x = 0\)

Khi đó, tọa độ của điểm C là C(0; 2).

Þ OC = 2 (cm)

Xét khẳng định A.

\(\tan A = \frac{{OC}}{{OA}} = \frac{2}{4} = \frac{1}{2} \Rightarrow \widehat A = 26^\circ 33'.\)

\(\tan B = \frac{{OC}}{{OB}} = \frac{2}{2} = 1 \Rightarrow \widehat B = 45^\circ .\)

Do đó \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {26^\circ 33' + 45^\circ } \right) = 108^\circ 27'.\)

Vậy khẳng định A đúng.

Xét khẳng định B.

Ta có AB = 6 (cm).

Theo định lí Py-ta-go, ta có:

AC2 = OA2 + OC2 = 42 + 22 = 20

\( \Rightarrow AC = \sqrt {20} = 4,47\;\left( {cm} \right).\)

Theo định lí Py-ta-go, ta có:

BC2 = OB2 + OC2 = 22 + 22 = 8

\( \Rightarrow BC = \sqrt 8 = 2,83\;\left( {cm} \right).\)

Chu vi tam giác ABC là:

P∆ABC = AB + AC + BC

= 6 + 4,47 + 2,83 = 13,3 (cm).

Vậy khẳng định B sai.

Xét khẳng định C.

Diện tích tam giác ABC là:

\({S_{ABC}} = \frac{1}{2}AB.OC = \frac{1}{2}.6.2 = 6\;\left( {c{m^2}} \right)\)

Vậy khẳng định C đúng.

Vậy ta chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Do ABCD là hình bình hành nên ta có:

+) \(AB\;{\rm{//}}\;{\rm{CD}} \Rightarrow \widehat {ABD} = \widehat {BDC}\) (Hai góc ở vị trí so le trong).

\( \Rightarrow \widehat {KBO} = \widehat {HDO}\).

+) \(AD\;{\rm{//}}\;B{\rm{C}} \Rightarrow \widehat {DAC} = \widehat {ACB}\) (Hai góc ở vị trí so le trong).

\( \Rightarrow \widehat {EAO} = \widehat {FCO}\).

Xét ∆KOB và ∆HOD có:

\(\widehat {KBO} = \widehat {HDO}\) (cmt)

OB = OD (gt)

\(\widehat {KOB} = \widehat {HOD}\) (Hai góc đối đỉnh)

Þ ∆KOB = ∆HOD (g.c.g)

Þ OK = OH (Hai cạnh tương ứng bằng nhau) (1)

Xét ∆EOA và ∆FOC có:

\(\widehat {EAO} = \widehat {FCO}\) (cmt)

OA = OC (gt)

\(\widehat {EOA} = \widehat {FOC}\) (Hai góc đối đỉnh)

Þ ∆EOA = ∆FOC (g.c.g)

Þ OE = OF (Hai cạnh tương ứng bằng nhau) (2)

Từ (1) và (2) ta có tứ giác EKFH có hai cặp cạnh đối thỏa mãn OK = OH OE = OF.

Suy ra EKFH là hình bình hành.

Lời giải

Lời giải

Media VietJack

a) N là điểm chung của (ABN) và (SCD).

AB // CD Þ (ABN) ∩ (SCD) = Nx // CD // AB.

b) Gọi E là trung điểm của CD

\( \Rightarrow DE = MB = \frac{1}{2}CD = \frac{1}{2}AB\).

Xét tam giác CSD có \(\frac{{EC}}{{CD}} = \frac{{CN}}{{SC}} = \frac{1}{2}\).

Áp dụng định lý Ta-lét đảo suy ra: EN // SD (1)

Ta thấy BM // DE và BM = DE suy ra DMBE là hình bình hành.

Þ BE // DM (2)

Từ (1) và (2) Þ (BNE) // (SDM)

Þ BN // (SDM)

c) Gọi O là tâm của hình bình hành ABCD.

Ta có O Î (SBD) Þ SO Ì (SBD)

Þ I = SO Ç AN là điểm cần tìm.

Gọi K là giao điểm của MC và BD

Þ K Î (SBD) Þ SK Ì (SBD)

Þ J = SK Ç MN là điểm cần tìm.

d) Xét tam giác SAC có I là giao điểm của hai đường trung tuyến là SO và AN nên I là trọng tâm của tam giác SAC

\( \Rightarrow \frac{{AI}}{{AN}} = \frac{2}{3}\)

Do MB // CD nên theo định lí Ta-lét ta có: \(\frac{{MB}}{{CD}} = \frac{{MK}}{{KC}} = \frac{1}{2} \Rightarrow \frac{{MK}}{{MC}} = \frac{1}{3}\).

Xét tam giác MSC có:

\(\frac{{MC}}{{MK}} + \frac{{MS}}{{MS}} = 2\frac{{MN}}{{MJ}}\)

\( \Rightarrow 3 + 1 = 2 \cdot \frac{{MN}}{{MJ}} \Rightarrow \frac{{MJ}}{{MN}} = \frac{1}{2}\)

Xét tam giác BNA có:

\(\frac{{BN}}{{BN}} + \frac{{BA}}{{BM}} = 2\frac{{BI}}{{BJ}}\)

\( \Rightarrow 1 + 2 = 2 \cdot \frac{{BI}}{{BJ}} \Rightarrow \frac{{IB}}{{BJ}} = \frac{3}{2} \Rightarrow \frac{{IB}}{{IJ}} = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP