Câu hỏi:
28/03/2023 1,240
Cho hai đường thẳng \(\left( {{D_1}} \right):y = \frac{1}{2}x + 2\) và \(\left( {{D_2}} \right):y = - x + 2\)
Gọi A và B theo thứ tự giao điểm của (D1) và (D2) với các trục hoành, C là giao điểm của hai đường thẳng đó (đơn vị trên các trục tọa độ là centimet).
Khẳng định nào sau đây sai?
Cho hai đường thẳng \(\left( {{D_1}} \right):y = \frac{1}{2}x + 2\) và \(\left( {{D_2}} \right):y = - x + 2\)
Gọi A và B theo thứ tự giao điểm của (D1) và (D2) với các trục hoành, C là giao điểm của hai đường thẳng đó (đơn vị trên các trục tọa độ là centimet).
Khẳng định nào sau đây sai?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
• Vì A là giao điểm của (D1) với trục hoành nên hoành độ giao điểm của A là nghiệm của phương trình:
\(\frac{1}{2}x + 2 = 0 \Leftrightarrow x = - 4\)
Khi đó, tọa độ của điểm A là A(– 4, 0).
Þ OA = 8 (cm)
• Vì B là giao điểm của (D2) với trục hoành nên hoành độ giao điểm của A là nghiệm của phương trình:
– x + 2 = 0 Û x = 2
Khi đó, tọa độ của điểm B là B(2, 0).
Þ OB = 2 (cm)
• Vì C là giao điểm của hai đường thẳng (D1) và (D2) nên hoành độ giao điểm của C là nghiệm của phương trình:
\(\frac{1}{2}x + 2 = - x + 2 \Leftrightarrow x = 0\)
Khi đó, tọa độ của điểm C là C(0; 2).
Þ OC = 2 (cm)
Xét khẳng định A.
\(\tan A = \frac{{OC}}{{OA}} = \frac{2}{4} = \frac{1}{2} \Rightarrow \widehat A = 26^\circ 33'.\)
\(\tan B = \frac{{OC}}{{OB}} = \frac{2}{2} = 1 \Rightarrow \widehat B = 45^\circ .\)
Do đó \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {26^\circ 33' + 45^\circ } \right) = 108^\circ 27'.\)
Vậy khẳng định A đúng.
Xét khẳng định B.
Ta có AB = 6 (cm).
Theo định lí Py-ta-go, ta có:
AC2 = OA2 + OC2 = 42 + 22 = 20
\( \Rightarrow AC = \sqrt {20} = 4,47\;\left( {cm} \right).\)
Theo định lí Py-ta-go, ta có:
BC2 = OB2 + OC2 = 22 + 22 = 8
\( \Rightarrow BC = \sqrt 8 = 2,83\;\left( {cm} \right).\)
Chu vi tam giác ABC là:
P∆ABC = AB + AC + BC
= 6 + 4,47 + 2,83 = 13,3 (cm).
Vậy khẳng định B sai.
Xét khẳng định C.
Diện tích tam giác ABC là:
\({S_{ABC}} = \frac{1}{2}AB.OC = \frac{1}{2}.6.2 = 6\;\left( {c{m^2}} \right)\)
Vậy khẳng định C đúng.
Vậy ta chọn đáp án B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Do ABCD là hình bình hành nên ta có:
+) \(AB\;{\rm{//}}\;{\rm{CD}} \Rightarrow \widehat {ABD} = \widehat {BDC}\) (Hai góc ở vị trí so le trong).
\( \Rightarrow \widehat {KBO} = \widehat {HDO}\).
+) \(AD\;{\rm{//}}\;B{\rm{C}} \Rightarrow \widehat {DAC} = \widehat {ACB}\) (Hai góc ở vị trí so le trong).
\( \Rightarrow \widehat {EAO} = \widehat {FCO}\).
Xét ∆KOB và ∆HOD có:
\(\widehat {KBO} = \widehat {HDO}\) (cmt)
OB = OD (gt)
\(\widehat {KOB} = \widehat {HOD}\) (Hai góc đối đỉnh)
Þ ∆KOB = ∆HOD (g.c.g)
Þ OK = OH (Hai cạnh tương ứng bằng nhau) (1)
Xét ∆EOA và ∆FOC có:
\(\widehat {EAO} = \widehat {FCO}\) (cmt)
OA = OC (gt)
\(\widehat {EOA} = \widehat {FOC}\) (Hai góc đối đỉnh)
Þ ∆EOA = ∆FOC (g.c.g)
Þ OE = OF (Hai cạnh tương ứng bằng nhau) (2)
Từ (1) và (2) ta có tứ giác EKFH có hai cặp cạnh đối thỏa mãn OK = OH và OE = OF.
Suy ra EKFH là hình bình hành.
Lời giải
Lời giải
a) N là điểm chung của (ABN) và (SCD).
Mà AB // CD Þ (ABN) ∩ (SCD) = Nx // CD // AB.
b) Gọi E là trung điểm của CD
\( \Rightarrow DE = MB = \frac{1}{2}CD = \frac{1}{2}AB\).
Xét tam giác CSD có \(\frac{{EC}}{{CD}} = \frac{{CN}}{{SC}} = \frac{1}{2}\).
Áp dụng định lý Ta-lét đảo suy ra: EN // SD (1)
Ta thấy BM // DE và BM = DE suy ra DMBE là hình bình hành.
Þ BE // DM (2)
Từ (1) và (2) Þ (BNE) // (SDM)
Þ BN // (SDM)
c) Gọi O là tâm của hình bình hành ABCD.
Ta có O Î (SBD) Þ SO Ì (SBD)
Þ I = SO Ç AN là điểm cần tìm.
Gọi K là giao điểm của MC và BD
Þ K Î (SBD) Þ SK Ì (SBD)
Þ J = SK Ç MN là điểm cần tìm.
d) Xét tam giác SAC có I là giao điểm của hai đường trung tuyến là SO và AN nên I là trọng tâm của tam giác SAC
\( \Rightarrow \frac{{AI}}{{AN}} = \frac{2}{3}\)
Do MB // CD nên theo định lí Ta-lét ta có: \(\frac{{MB}}{{CD}} = \frac{{MK}}{{KC}} = \frac{1}{2} \Rightarrow \frac{{MK}}{{MC}} = \frac{1}{3}\).
Xét tam giác MSC có:
\(\frac{{MC}}{{MK}} + \frac{{MS}}{{MS}} = 2\frac{{MN}}{{MJ}}\)
\( \Rightarrow 3 + 1 = 2 \cdot \frac{{MN}}{{MJ}} \Rightarrow \frac{{MJ}}{{MN}} = \frac{1}{2}\)
Xét tam giác BNA có:
\(\frac{{BN}}{{BN}} + \frac{{BA}}{{BM}} = 2\frac{{BI}}{{BJ}}\)
\( \Rightarrow 1 + 2 = 2 \cdot \frac{{BI}}{{BJ}} \Rightarrow \frac{{IB}}{{BJ}} = \frac{3}{2} \Rightarrow \frac{{IB}}{{IJ}} = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.