Câu hỏi:
12/07/2024 1,920Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Để đường thẳng y = (m + 2)x + m song song với đường thẳng y = 3x − 2 thì:
\(\left\{ \begin{array}{l}m + 2 = 3\\m \ne - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m = 1\\m \ne - 2\end{array} \right. \Rightarrow m = 1\).
Vậy m = 1 là giá trị của m thỏa mãn yêu cầu bài toán.
b) Đồ thị của hàm số \(y = - \frac{1}{4}{x^2}\).
• Với x = 0 Þ y = 0 nên đồ thị hàm số đi qua O(0; 0).
• Với x = 2 \[ \Rightarrow y = - \frac{1}{4} \cdot {2^2} = - 1\] nên đồ thị hàm số đi qua điểm M(2; −1).
Ta có đồ thị hàm số \(y = - \frac{1}{4}{x^2}\) như sau:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.
a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.
b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.
c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.
d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.
Câu 5:
Câu 6:
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Đường thẳng d thay đổi đi qua M cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D)
a) Chứng minh tứ giác AMBO nội tiếp
b) Chứng minh MA2 = MC.MD
c) Chứng minh đường tròn ngoại tiếp tam giác OCD luôn đi qua điểm cố định khác O
Câu 7:
Cho đường tròn tâm O và BC là dây cung không đi qua tâm. Trên tia đối của tia BC lấy điểm M sao cho M không trùng với B. Đường thẳng đi qua M cắt đường tròn (O) đã cho tại N và P (N nằm giữa M và P) sao cho O nằm trong PMC. Gọi A là điểm chính giữa của cung nhỏ NP. Các dây AB và AC lần lượt cắt NP tại D và E.
a) Chứng minh tứ giác BDEC nội tiếp.
b) Chứng minh MB.MC = MN.MP.
về câu hỏi!