Câu hỏi:

12/07/2024 5,631

Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C khác A, B) vẽ tiếp tuyến CM cắt Ax tại M, hạ CH vuông góc với AB, MB cắt (O) tại Q và cắt CH tại N.

a) Chứng minh MA2 = MQ.MB
b) MO cắt AC tại I. Chứng minh tứ giác AIQM nội tiếp
.
c) Chứng minh: IN
^ CH.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack 

a) ∆AQB nội tiếp đường tròn (O)

\( \Rightarrow \widehat {AQB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Þ AQ ^ BM.

Tam giác ABM vuông tại A có AQ ^ BM, ta áp dụng hệ thức lượng trong tam giác vuông suy ra: MA2 = MQ.MB (đpcm).

b) ∆ACB nội tiếp đường tròn (O)

\( \Rightarrow \widehat {ACB} = 90^\circ \) (Góc nội tiếp chắn nửa đường tròn)

Þ AC ^ BC (1)

Ta có: OA = OC (Bán kính của đường tròn tâm O)

Và MA = MC (Hai tiếp tuyến MA, MC cắt nhau tại M)

Þ MO là đường trung trực của đoạn thẳng AC

Þ MO ^ AC (2)

Từ (1) và (2) Þ BC // OM (Cùng vuông góc với AC)

\( \Rightarrow \widehat {OMB} = \widehat {MBC}\) (Hai góc ở vị trí so le trong)

Hay \(\widehat {IMQ} = \widehat {MBC}\) (3)

Mặt khác: \(\widehat {QAI} = \widehat {MBC}\) (Hai góc nội tiếp đường tròn (O) cùng chắn cung QC) (4)

Từ (3) và (4) \( \Rightarrow \widehat {IMQ} = \widehat {QAI}\;\left( { = \widehat {MBC}} \right)\)

Do M và A cùng nhìn QI cố định dưới hai góc bằng nhau nên tứ giác AIQM nội tiếp.

c) Do tứ giác AIQM nội tiếp nên suy ra:

\(\widehat {AMI} = \widehat {AQI}\) (Hai góc nội tiếp đường tròn cùng chắn cung AI) (5)

Ta có: \(\widehat {IQN} = \widehat {AQB} - \widehat {AQI} = 90^\circ - \widehat {AQI}\) (6)

Xét tam giác AIM vuông tại I có \(\widehat {AMI} + \widehat {MAI} = 90^\circ \)

\(\widehat {MAI} + \widehat {IAO} = \widehat {MAO} = 90^\circ \)

\( \Rightarrow \widehat {AMI} = \widehat {IAO}\) (Hai góc cùng phụ với \(\widehat {MAI}\)) (7)

Xét tam giác CAH vuông tại H có:

\(\widehat {CAH} + \widehat {ACH} = 90^\circ \Rightarrow \widehat {ACH} = 90^\circ - \widehat {CAH}\)

Hay \(\widehat {ICN} = 90^\circ - \widehat {IAO}\) (8)

Từ (5), (6), (7) và (8) \( \Rightarrow \widehat {IQN} = \widehat {ICN}\)

Do Q và C cùng nhìn IN cố định dưới hai góc bằng nhau nên tứ giác IQCN nội tiếp.

\( \Rightarrow \widehat {CIN} = \widehat {CQN}\) (Hai góc nội tiếp đường tròn cùng chắn cung CN) (*)

\(\widehat {CAB} = \widehat {CQB}\) (Hai góc nội tiếp đường tròn (O) cùng chắn cung CB) (**)

Từ (*) và (**) nên suy ra \(\widehat {CIN} = \widehat {CAH}\)

Þ IN // AH (Có hai góc ở vị trí đồng vị bằng nhau)

Mà AH ^ CH nên suy ra IN ^ CH.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Do ABCD là hình bình hành nên ta có:

+) \(AB\;{\rm{//}}\;{\rm{CD}} \Rightarrow \widehat {ABD} = \widehat {BDC}\) (Hai góc ở vị trí so le trong).

\( \Rightarrow \widehat {KBO} = \widehat {HDO}\).

+) \(AD\;{\rm{//}}\;B{\rm{C}} \Rightarrow \widehat {DAC} = \widehat {ACB}\) (Hai góc ở vị trí so le trong).

\( \Rightarrow \widehat {EAO} = \widehat {FCO}\).

Xét ∆KOB và ∆HOD có:

\(\widehat {KBO} = \widehat {HDO}\) (cmt)

OB = OD (gt)

\(\widehat {KOB} = \widehat {HOD}\) (Hai góc đối đỉnh)

Þ ∆KOB = ∆HOD (g.c.g)

Þ OK = OH (Hai cạnh tương ứng bằng nhau) (1)

Xét ∆EOA và ∆FOC có:

\(\widehat {EAO} = \widehat {FCO}\) (cmt)

OA = OC (gt)

\(\widehat {EOA} = \widehat {FOC}\) (Hai góc đối đỉnh)

Þ ∆EOA = ∆FOC (g.c.g)

Þ OE = OF (Hai cạnh tương ứng bằng nhau) (2)

Từ (1) và (2) ta có tứ giác EKFH có hai cặp cạnh đối thỏa mãn OK = OH OE = OF.

Suy ra EKFH là hình bình hành.

Lời giải

Lời giải

Media VietJack

a) N là điểm chung của (ABN) và (SCD).

AB // CD Þ (ABN) ∩ (SCD) = Nx // CD // AB.

b) Gọi E là trung điểm của CD

\( \Rightarrow DE = MB = \frac{1}{2}CD = \frac{1}{2}AB\).

Xét tam giác CSD có \(\frac{{EC}}{{CD}} = \frac{{CN}}{{SC}} = \frac{1}{2}\).

Áp dụng định lý Ta-lét đảo suy ra: EN // SD (1)

Ta thấy BM // DE và BM = DE suy ra DMBE là hình bình hành.

Þ BE // DM (2)

Từ (1) và (2) Þ (BNE) // (SDM)

Þ BN // (SDM)

c) Gọi O là tâm của hình bình hành ABCD.

Ta có O Î (SBD) Þ SO Ì (SBD)

Þ I = SO Ç AN là điểm cần tìm.

Gọi K là giao điểm của MC và BD

Þ K Î (SBD) Þ SK Ì (SBD)

Þ J = SK Ç MN là điểm cần tìm.

d) Xét tam giác SAC có I là giao điểm của hai đường trung tuyến là SO và AN nên I là trọng tâm của tam giác SAC

\( \Rightarrow \frac{{AI}}{{AN}} = \frac{2}{3}\)

Do MB // CD nên theo định lí Ta-lét ta có: \(\frac{{MB}}{{CD}} = \frac{{MK}}{{KC}} = \frac{1}{2} \Rightarrow \frac{{MK}}{{MC}} = \frac{1}{3}\).

Xét tam giác MSC có:

\(\frac{{MC}}{{MK}} + \frac{{MS}}{{MS}} = 2\frac{{MN}}{{MJ}}\)

\( \Rightarrow 3 + 1 = 2 \cdot \frac{{MN}}{{MJ}} \Rightarrow \frac{{MJ}}{{MN}} = \frac{1}{2}\)

Xét tam giác BNA có:

\(\frac{{BN}}{{BN}} + \frac{{BA}}{{BM}} = 2\frac{{BI}}{{BJ}}\)

\( \Rightarrow 1 + 2 = 2 \cdot \frac{{BI}}{{BJ}} \Rightarrow \frac{{IB}}{{BJ}} = \frac{3}{2} \Rightarrow \frac{{IB}}{{IJ}} = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay