Câu hỏi:
11/07/2024 2,393Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Tứ giác ABEF có 2 đỉnh kề nhau cùng nhìn cung BA với hai góc bằng nhau:
\(\widehat {BEA} = \widehat {AFB} = 90^\circ \).
Do đó tứ giác ABEF nội tiếp đường tròn.
b) Tứ giác EBAF nội tiếp đường tròn.
\( \Rightarrow \widehat {BAE} = \widehat {BFE}\) (Hai góc nội tiếp cùng chắn cung BE).
Lại có: \(\widehat {BAE} = 90^\circ - \widehat {EBA}\)
Và \(\widehat {BFE} = 90^\circ - \widehat {EFC}\)
\( \Rightarrow \widehat {EFC} = \widehat {EBA} \Rightarrow \widehat {CBA} = \widehat {CFE}\)
Xét ∆ABC và ∆EFC có:
\(\widehat {CBA} = \widehat {CFE}\) (cmt)
\(\widehat C\): góc chung
Þ ∆ABC ᔕ ∆EFC (g.g)
c) Ta có: \(\widehat {IBC} = \widehat {IAC}\) (Hai góc nội tiếp cùng chắn cung IC)
Lại có: \(\widehat {EBF} = \widehat {EAF}\) (Hai góc nội tiếp cùng chắn cung EF)
Þ \(\widehat {IBE} = \widehat {HBE}\)
Þ BE là đường phân giác của góc \(\widehat {IBH}\).
Mà BE cũng là đường cao của ∆IBH nên ∆IBH là tam giác cân tại B có BE là đường trung trực của cạnh HI.
Vậy H và I đối xứng với nhau qua BC.
d) D, E lần lượt là giao của AO và AI với BC.
Do OK // EI nên theo định lí Ta-lét ta có:
\(\frac{{EI}}{{OK}} = \frac{{EG}}{{GK}} \Rightarrow \frac{{EH}}{{OK}} = \frac{{EG}}{{GK}}\).
Và \(\widehat {EIG} = \widehat {GOK}\) (Hai góc ở vị trí so le trong) (1)
Do OK // EA nên theo định lí Ta-lét ta có:
\(\frac{{OK}}{{AE}} = \frac{{DK}}{{DE}} \Rightarrow \frac{{AE}}{{OK}} = \frac{{DE}}{{DK}}\).
Và \(\widehat {DOK} = \widehat {DAE}\) (Hai góc ở vị trí đồng vị) (2)
Ta có:
\(\frac{{AH}}{{OK}} = \frac{{AE}}{{OK}} - \frac{{EH}}{{OK}} = \frac{{ED}}{{DK}} - \frac{{EG}}{{GK}}\) (*)
Tam giác OIA cân tại O do có OI = OA (3)
Từ (1), (2), (3) suy ra \(\widehat {GOK} = \widehat {DOK}\).
Þ OK là đường phân giác của tam giác DOG mà OK cũng là đường cao nên OK là đường trung trực của tam giác DOG cân tại O
Þ GK = DK
Khi đó (*) trở thành: \(\frac{{AH}}{{OK}} = \frac{{ED}}{{DK}} - \frac{{EG}}{{GK}} = \frac{{ED}}{{GK}} - \frac{{EG}}{{GK}} = \frac{{GD}}{{GK}} = 2\).
Vậy tỉ số \[\frac{{AH}}{{OK}}\] không đổi.
Do BC cố định nên ta luôn xây dựng được một đường tròn (J) là đường tròn ngoại tiếp của tam giác HBC. Vậy nên H luôn chuyển động trên một cung cố định.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.
a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.
b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.
c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.
d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.
Câu 5:
Câu 6:
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Đường thẳng d thay đổi đi qua M cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D)
a) Chứng minh tứ giác AMBO nội tiếp
b) Chứng minh MA2 = MC.MD
c) Chứng minh đường tròn ngoại tiếp tam giác OCD luôn đi qua điểm cố định khác O
Câu 7:
Cho đường tròn tâm O và BC là dây cung không đi qua tâm. Trên tia đối của tia BC lấy điểm M sao cho M không trùng với B. Đường thẳng đi qua M cắt đường tròn (O) đã cho tại N và P (N nằm giữa M và P) sao cho O nằm trong PMC. Gọi A là điểm chính giữa của cung nhỏ NP. Các dây AB và AC lần lượt cắt NP tại D và E.
a) Chứng minh tứ giác BDEC nội tiếp.
b) Chứng minh MB.MC = MN.MP.
về câu hỏi!