Câu hỏi:

11/07/2024 2,763

Trên đường tròn (O; R) vẽ dây cung BC cố định. Một điểm A di chuyển trên cung lớn BC. Hai đường cao AE và BF của tam giác ABC cắt nhau tại H.
a) Chứng minh tứ giác ABEF nội tiếp
.
b) Chứng minh tam giác ABC đồng dạng tam giác EFC
.
c) Đường thẳng AE cắt đường tròn (O) tại I. Chứng minh H và I đối xứng nhau qua BC.
d) Gọi K là hình chiếu của O trên BC. Chứng minh tỉ số
\[\frac{{AH}}{{OK}}\] không đổi và H chạy trên một cung tròn cố định khi A chuyển động trên cung lớn BC.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Tứ giác ABEF có 2 đỉnh kề nhau cùng nhìn cung BA với hai góc bằng nhau:

\(\widehat {BEA} = \widehat {AFB} = 90^\circ \).

Do đó tứ giác ABEF nội tiếp đường tròn.

b) Tứ giác EBAF nội tiếp đường tròn.

\( \Rightarrow \widehat {BAE} = \widehat {BFE}\) (Hai góc nội tiếp cùng chắn cung BE).

Lại có: \(\widehat {BAE} = 90^\circ - \widehat {EBA}\)

\(\widehat {BFE} = 90^\circ - \widehat {EFC}\)

\( \Rightarrow \widehat {EFC} = \widehat {EBA} \Rightarrow \widehat {CBA} = \widehat {CFE}\)

Xét ∆ABC và ∆EFC có:

\(\widehat {CBA} = \widehat {CFE}\) (cmt)

\(\widehat C\): góc chung

Þ ∆ABC ∆EFC (g.g)

c) Ta có: \(\widehat {IBC} = \widehat {IAC}\) (Hai góc nội tiếp cùng chắn cung IC)

Lại có: \(\widehat {EBF} = \widehat {EAF}\) (Hai góc nội tiếp cùng chắn cung EF)

Þ \(\widehat {IBE} = \widehat {HBE}\)

Þ BE là đường phân giác của góc \(\widehat {IBH}\).

Mà BE cũng là đường cao của ∆IBH nên ∆IBH là tam giác cân tại B có BE là đường trung trực của cạnh HI.

Vậy H và I đối xứng với nhau qua BC.

d) D, E lần lượt là giao của AO và AI với BC.

Do OK // EI nên theo định lí Ta-lét ta có:

\(\frac{{EI}}{{OK}} = \frac{{EG}}{{GK}} \Rightarrow \frac{{EH}}{{OK}} = \frac{{EG}}{{GK}}\).

\(\widehat {EIG} = \widehat {GOK}\) (Hai góc ở vị trí so le trong) (1)

Do OK // EA nên theo định lí Ta-lét ta có:

\(\frac{{OK}}{{AE}} = \frac{{DK}}{{DE}} \Rightarrow \frac{{AE}}{{OK}} = \frac{{DE}}{{DK}}\).

\(\widehat {DOK} = \widehat {DAE}\) (Hai góc ở vị trí đồng vị) (2)

Ta có:

\(\frac{{AH}}{{OK}} = \frac{{AE}}{{OK}} - \frac{{EH}}{{OK}} = \frac{{ED}}{{DK}} - \frac{{EG}}{{GK}}\) (*)

Tam giác OIA cân tại O do có OI = OA (3)

Từ (1), (2), (3) suy ra \(\widehat {GOK} = \widehat {DOK}\).

Þ OK là đường phân giác của tam giác DOG mà OK cũng là đường cao nên OK là đường trung trực của tam giác DOG cân tại O

Þ GK = DK

 Khi đó (*) trở thành: \(\frac{{AH}}{{OK}} = \frac{{ED}}{{DK}} - \frac{{EG}}{{GK}} = \frac{{ED}}{{GK}} - \frac{{EG}}{{GK}} = \frac{{GD}}{{GK}} = 2\).

Vậy tỉ số \[\frac{{AH}}{{OK}}\] không đổi.

Do BC cố định nên ta luôn xây dựng được một đường tròn (J) là đường tròn ngoại tiếp của tam giác HBC. Vậy nên H luôn chuyển động trên một cung cố định.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo AC và BD. Qua O vẽ đường thẳng a cắt AD, BC lần lượt tại E, F. Qua O vẽ đường thẳng b cắt AB và CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành.

Xem đáp án » 12/07/2024 43,099

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB, SC.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD)
.
b) Chứng minh đường thẳng BN song song với mặt phẳng (SDM)
.
c) Xác định các điểm I, J lần lượt là giao điểm của đường thẳng AN và đường thẳng MN với mặt phẳng (SBD)
.
d) Tính tỉ số
\(\frac{{IB}}{{IJ}}\).

Xem đáp án » 12/07/2024 35,465

Câu 3:

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.

a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.

b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.

c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.

d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.

Xem đáp án » 11/07/2024 8,330

Câu 4:

Đặt tính rồi tính 155,9 : 45

Xem đáp án » 12/07/2024 7,286

Câu 5:

Cho nửa đường tròn (O), đường kính AB; Ax là tiếp tuyến của nửa đường tròn. Trên nửa đường tròn lấy điểm D (D khác A, B). Tiếp tuyến tại D của (O) cắt Ax ở S.

a) Chứng minh SO // BD.

b) BD cắt AS ở C. Chứng minh SA = SC.

c) Kẻ DH vuông góc với AB; DH cắt BS tại E. Chứng minh E là trung điểm của DH.

Xem đáp án » 12/07/2024 6,444

Câu 6:

Cho tam giác ABC có A(−5; 6), B(−4; −1), C(4; 3). Tìm tọa độ trung điểm I của AC. Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 28/03/2023 6,442

Câu 7:

Cho hàm số có đồ thị (C) \(y = \frac{{2x + 1}}{{x - 1}}\) và đường thẳng  d: y = x + m. Đường thẳng d cắt đồ thị (C) tại hai điểm A và B. Với C(−2; 5), giá trị của tham số m để tam giác ABC đều là bao nhiêu?

Xem đáp án » 11/07/2024 6,436

Bình luận


Bình luận