Câu hỏi:
11/07/2024 1,576Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{100}^3\).
Ta tính số cáchchonj ba phần tử khác nhau của tập hợp A sao cho ba phần tủ nhày là độ dài ba cạnh một tam giác.
Giả sử ba số cần chọn là x < y < z. Khi đó ta phải có x > z − y.
Đặt k = z − y; 1 £ k £ 49.
Với k = 1, ta có x Î {2; 3; …; 98}. Ta xét từng trường hợp như sau:
+ x = 2 các bộ số (y; z) lượt là (3; 4), (4; 5), …, (99; 100) có 97 bộ.
+ x = 3 các bộ số (y; z) lượt là (4; 5), (5; 6), …, (99; 100) có 96 bộ.
…
+ x = 8 chỉ có 1 bộ số (y; z) = (99; 100) thỏa mãn.
Do đó số bộ ba trong trường hợp này là \(1 + 2 + ... + 97 = \frac{{97.98}}{2} = 97.49\).
Với k = 2, ta có x Î {3; 4; …; 97}. Ta xét từng trường hợp như sau:
+ x = 3 các bộ số (y; z) lượt là (4; 6), (5; 7), …, (98; 100) có 95 bộ.
…
+ x = 97 chỉ có 1 bộ số (y; z) = (98; 100) thỏa mãn.
Như vậy trường hợp này số bộ ba là \(1 + 2 + ... + 95 = \frac{{95.96}}{2} = 95.48\).
Lập luận tương tự đến trường hợp k = 49 thì x = 50 và chỉ có một bộ số (y; z) thỏa mãn là (51; 100).
Vậy số cách chọn bộ ba số thỏa mãn yêu cầu là \(n = \sum\limits_{k = 1}^{49} {\left( {2k - 1} \right)} = 79625\)
Xác suất của biến cố cần tìm là \[P = \frac{n}{{n\left( \Omega \right)}} = \frac{{79625}}{{C_{100}^3}} = \frac{{65}}{{132}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.
a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.
b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.
c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.
d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.
Câu 5:
Câu 6:
Câu 7:
Cho nửa đường tròn (O), đường kính AB; Ax là tiếp tuyến của nửa đường tròn. Trên nửa đường tròn lấy điểm D (D khác A, B). Tiếp tuyến tại D của (O) cắt Ax ở S.
a) Chứng minh SO // BD.
b) BD cắt AS ở C. Chứng minh SA = SC.
c) Kẻ DH vuông góc với AB; DH cắt BS tại E. Chứng minh E là trung điểm của DH.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
về câu hỏi!