Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
+ TH1: Nếu x chẵn, ta đặt: x = 2k, với k Î ℕ.
Þ x2 + 1 = 4k2 + 1 không chia hết cho 4 .
+ TH2: Nếu x chẵn, ta đặt: x = 2k + 1, với k Î ℕ.
Þ x2 + 1 = 4k2 + 4k + 2 = 4k(k + 1) + 2.
Vì 4k(k + 1) ⋮ 4 Þ 4k(k + 1) + 2 chia cho 4 dư 2
Þ 4k(k + 1) + 2 không chia hết cho 4.
Vậy với x Î ℕ thì x2 + 1 không chia hết cho 4.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.
a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.
b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.
c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.
d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.
Câu 5:
Câu 6:
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Đường thẳng d thay đổi đi qua M cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D)
a) Chứng minh tứ giác AMBO nội tiếp
b) Chứng minh MA2 = MC.MD
c) Chứng minh đường tròn ngoại tiếp tam giác OCD luôn đi qua điểm cố định khác O
Câu 7:
Cho nửa đường tròn (O), đường kính AB; Ax là tiếp tuyến của nửa đường tròn. Trên nửa đường tròn lấy điểm D (D khác A, B). Tiếp tuyến tại D của (O) cắt Ax ở S.
a) Chứng minh SO // BD.
b) BD cắt AS ở C. Chứng minh SA = SC.
c) Kẻ DH vuông góc với AB; DH cắt BS tại E. Chứng minh E là trung điểm của DH.
về câu hỏi!