Câu hỏi:

28/03/2023 624

Số hạng nào chứa x với số mũ tự nhiên trong khai triển sau:

a) \({\left( {\sqrt[4]{x} + x} \right)^{10}}\)

b) \({\left( {x + \frac{1}{{\sqrt[3]{x}}}} \right)^{13}}\)

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) \({\left( {\sqrt[4]{x} + x} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k.{{\sqrt[4]{x}}^k}.{x^{10 - k}}} \)

\[ = \sum\limits_{k = 0}^{10} {C_{10}^k.{x^{\frac{k}{4}}}.{x^{10 - k}}} = \sum\limits_{k = 0}^{10} {C_{10}^k.{x^{\frac{k}{4} + 10 - k}}} \]

\[ = \sum\limits_{k = 0}^{10} {C_{10}^k.{x^{10 - \frac{{3k}}{4}}}} \]

Để số hạng chứa x có số mũ tự nhiên thì \(10 - \frac{{3k}}{4} \in \mathbb{N}\;\left( {0 \le k \le 10} \right)\)

\[0 < 10 - \frac{{3k}}{4} \le 10\]

\( \Rightarrow k \in U\left( 4 \right) = \left\{ {0;\;4;\;8} \right\}\).

Vậy số hạng chứa x với số mũ tự nhiên trong khai triển sau: \[C_{10}^0{x^{10}},\;C_{10}^4{x^7},\;C_{10}^8{x^4}\].

b) \({\left( {x + \frac{1}{{\sqrt[3]{x}}}} \right)^{13}} = \sum\limits_{k = 0}^{13} {C_{13}^k.{x^{13 - k}}.\frac{1}{{{{\sqrt[3]{x}}^k}}}} = \sum\limits_{k = 0}^{13} {C_{13}^k.{x^{13 - k}}.{x^{ - \frac{k}{3}}}} \)

\( = \sum\limits_{k = 0}^{13} {C_{13}^k.{x^{13 - \frac{{4k}}{3}}}} \).

Để số hạng chứa x có số mũ tự nhiên thì \(13 - \frac{{4k}}{3} \in \mathbb{N}\;\left( {0 \le k \le 13} \right)\)

\[0 < 13 - \frac{{4k}}{3} \le 13\]

\( \Rightarrow k \in U\left( 3 \right) = \left\{ {0;\;3;\;6;\;9} \right\}\).

Vậy số hạng chứa x với số mũ tự nhiên trong khai triển sau:

\[C_{13}^0{x^{13}},\;C_{13}^3{x^9},\;C_{13}^6{x^5},\;C_{13}^9x\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo AC và BD. Qua O vẽ đường thẳng a cắt AD, BC lần lượt tại E, F. Qua O vẽ đường thẳng b cắt AB và CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành.

Xem đáp án » 12/07/2024 43,227

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB, SC.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD)
.
b) Chứng minh đường thẳng BN song song với mặt phẳng (SDM)
.
c) Xác định các điểm I, J lần lượt là giao điểm của đường thẳng AN và đường thẳng MN với mặt phẳng (SBD)
.
d) Tính tỉ số
\(\frac{{IB}}{{IJ}}\).

Xem đáp án » 12/07/2024 35,516

Câu 3:

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.

a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.

b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.

c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.

d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.

Xem đáp án » 11/07/2024 8,439

Câu 4:

Đặt tính rồi tính 155,9 : 45

Xem đáp án » 12/07/2024 7,338

Câu 5:

Cho tam giác ABC có A(−5; 6), B(−4; −1), C(4; 3). Tìm tọa độ trung điểm I của AC. Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 28/03/2023 6,591

Câu 6:

Cho nửa đường tròn (O), đường kính AB; Ax là tiếp tuyến của nửa đường tròn. Trên nửa đường tròn lấy điểm D (D khác A, B). Tiếp tuyến tại D của (O) cắt Ax ở S.

a) Chứng minh SO // BD.

b) BD cắt AS ở C. Chứng minh SA = SC.

c) Kẻ DH vuông góc với AB; DH cắt BS tại E. Chứng minh E là trung điểm của DH.

Xem đáp án » 12/07/2024 6,498

Câu 7:

Cho hàm số có đồ thị (C) \(y = \frac{{2x + 1}}{{x - 1}}\) và đường thẳng  d: y = x + m. Đường thẳng d cắt đồ thị (C) tại hai điểm A và B. Với C(−2; 5), giá trị của tham số m để tam giác ABC đều là bao nhiêu?

Xem đáp án » 11/07/2024 6,483

Bình luận


Bình luận