Câu hỏi:

28/03/2023 144

Biết M(1;6) là điểm cực đại của đồ thị hàm số y = 2x3 + bx2 + cx + 1. Tìm tọa độ điểm cực tiểu của đồ thị hàm số đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

\(y' = 6{x^2} + 2bx + c\)

Vì M(1;6) là điểm cực đại của đồ thị hàm số nên x = 1 là nghiệm của y' = 0, đồng thời M thuộc đồ thị

\( \Rightarrow \left\{ \begin{array}{l}6 + 2b + c = 0\\2 + b + c + 1 = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 3\\c = - 12\end{array} \right.\)

Thay vào y' ta có: \(y' = 6{x^2} + 6x - 12\)

Þ 6x2 + 6x − 12 = 0

Û 6x2 − 6x + 12x − 12 = 0

Û 6x(x − 1) + 12(x − 1) = 0

Û 6(x − 1)(x + 2) = 0

\( \Rightarrow \left[ \begin{array}{l}x = 1\\x = - 2\end{array} \right.\)

Suy ra nghiệm còn lại là x = −2 là điểm CT của hàm số

Þ y = 21

Suy ra tọa độ điểm CT của đồ thị hàm số là N(−2; 21).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo AC và BD. Qua O vẽ đường thẳng a cắt AD, BC lần lượt tại E, F. Qua O vẽ đường thẳng b cắt AB và CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành.

Xem đáp án » 12/07/2024 44,957

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB, SC.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD)
.
b) Chứng minh đường thẳng BN song song với mặt phẳng (SDM)
.
c) Xác định các điểm I, J lần lượt là giao điểm của đường thẳng AN và đường thẳng MN với mặt phẳng (SBD)
.
d) Tính tỉ số
\(\frac{{IB}}{{IJ}}\).

Xem đáp án » 12/07/2024 36,144

Câu 3:

Tìm hiệu của số lớn nhất có ba chữ số khác nhau và số bé nhất có ba chữ số khác nhau

Xem đáp án » 12/07/2024 21,879

Câu 4:

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.

a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.

b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.

c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.

d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.

Xem đáp án » 11/07/2024 10,013

Câu 5:

Đặt tính rồi tính 155,9 : 45

Xem đáp án » 12/07/2024 8,364

Câu 6:

Cho hàm số có đồ thị (C) \(y = \frac{{2x + 1}}{{x - 1}}\) và đường thẳng  d: y = x + m. Đường thẳng d cắt đồ thị (C) tại hai điểm A và B. Với C(−2; 5), giá trị của tham số m để tam giác ABC đều là bao nhiêu?

Xem đáp án » 11/07/2024 7,644

Câu 7:

Cho tam giác ABC có A(−5; 6), B(−4; −1), C(4; 3). Tìm tọa độ trung điểm I của AC. Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 28/03/2023 7,595
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua