Câu hỏi:
12/07/2024 251
Giải hệ phương trình:
\[\left\{ \begin{array}{l}xy + x + y = 11\\{x^2}y + x{y^2} = 30\end{array} \right.\]
Giải hệ phương trình:
\[\left\{ \begin{array}{l}xy + x + y = 11\\{x^2}y + x{y^2} = 30\end{array} \right.\]
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
\[\left\{ \begin{array}{l}xy + x + y = 11\\{x^2}y + x{y^2} = 30\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xy + \left( {x + y} \right) = 11\\xy\left( {x + y} \right) = 30\end{array} \right.\] (*)
Ta đặt: a = x + y và b = xy (Với a2 ≥ − 4b)
Hệ phương trình (*) trở thành
\[\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}a + b = 11\\ab = 30\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 11 - a\\a\left( {11 - a} \right) = 30\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}b = 11 - a\\{a^2} - 11a + 30 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 11 - a\\\left( {a - 5} \right)\left( {a - 6} \right) = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}b = 11 - a\\\left[ \begin{array}{l}a = 5\\a = 6\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a = 5\\b = 6\end{array} \right.\\\left\{ \begin{array}{l}a = 6\\b = 5\end{array} \right.\end{array} \right.\]
+ TH1: \[\left\{ \begin{array}{l}a = 5\\b = 6\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l}x + y = 5\\xy = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 5 - x\\x\left( {5 - x} \right) = 6\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}y = 5 - x\\{x^2} - 5x + 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 5 - x\\\left( {x - 2} \right)\left( {x - 3} \right) = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}y = 5 - x\\\left[ \begin{array}{l}x = 2\\x = 3\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\\\left\{ \begin{array}{l}x = 3\\y = 2\end{array} \right.\end{array} \right.\].
+ TH2: \[\left\{ \begin{array}{l}a = 6\\b = 5\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l}x + y = 6\\xy = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 6 - x\\x\left( {6 - x} \right) = 5\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}y = 6 - x\\{x^2} - 6x + 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 6 - x\\\left( {x - 1} \right)\left( {x - 5} \right) = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}y = 6 - x\\\left[ \begin{array}{l}x = 1\\x = 5\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 1\\y = 5\end{array} \right.\\\left\{ \begin{array}{l}x = 5\\y = 1\end{array} \right.\end{array} \right.\].
Vậy cặp nghiệm (x; y) của hệ phương trình là: \[\left( {x;\;y} \right) = \left\{ {\left( {2;\;3} \right),\;\left( {3;\;2} \right),\;\left( {1;\;5} \right),\;\left( {5;\;1} \right)} \right\}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Do ABCD là hình bình hành nên ta có:
+) \(AB\;{\rm{//}}\;{\rm{CD}} \Rightarrow \widehat {ABD} = \widehat {BDC}\) (Hai góc ở vị trí so le trong).
\( \Rightarrow \widehat {KBO} = \widehat {HDO}\).
+) \(AD\;{\rm{//}}\;B{\rm{C}} \Rightarrow \widehat {DAC} = \widehat {ACB}\) (Hai góc ở vị trí so le trong).
\( \Rightarrow \widehat {EAO} = \widehat {FCO}\).
Xét ∆KOB và ∆HOD có:
\(\widehat {KBO} = \widehat {HDO}\) (cmt)
OB = OD (gt)
\(\widehat {KOB} = \widehat {HOD}\) (Hai góc đối đỉnh)
Þ ∆KOB = ∆HOD (g.c.g)
Þ OK = OH (Hai cạnh tương ứng bằng nhau) (1)
Xét ∆EOA và ∆FOC có:
\(\widehat {EAO} = \widehat {FCO}\) (cmt)
OA = OC (gt)
\(\widehat {EOA} = \widehat {FOC}\) (Hai góc đối đỉnh)
Þ ∆EOA = ∆FOC (g.c.g)
Þ OE = OF (Hai cạnh tương ứng bằng nhau) (2)
Từ (1) và (2) ta có tứ giác EKFH có hai cặp cạnh đối thỏa mãn OK = OH và OE = OF.
Suy ra EKFH là hình bình hành.
Lời giải
Lời giải
a) N là điểm chung của (ABN) và (SCD).
Mà AB // CD Þ (ABN) ∩ (SCD) = Nx // CD // AB.
b) Gọi E là trung điểm của CD
\( \Rightarrow DE = MB = \frac{1}{2}CD = \frac{1}{2}AB\).
Xét tam giác CSD có \(\frac{{EC}}{{CD}} = \frac{{CN}}{{SC}} = \frac{1}{2}\).
Áp dụng định lý Ta-lét đảo suy ra: EN // SD (1)
Ta thấy BM // DE và BM = DE suy ra DMBE là hình bình hành.
Þ BE // DM (2)
Từ (1) và (2) Þ (BNE) // (SDM)
Þ BN // (SDM)
c) Gọi O là tâm của hình bình hành ABCD.
Ta có O Î (SBD) Þ SO Ì (SBD)
Þ I = SO Ç AN là điểm cần tìm.
Gọi K là giao điểm của MC và BD
Þ K Î (SBD) Þ SK Ì (SBD)
Þ J = SK Ç MN là điểm cần tìm.
d) Xét tam giác SAC có I là giao điểm của hai đường trung tuyến là SO và AN nên I là trọng tâm của tam giác SAC
\( \Rightarrow \frac{{AI}}{{AN}} = \frac{2}{3}\)
Do MB // CD nên theo định lí Ta-lét ta có: \(\frac{{MB}}{{CD}} = \frac{{MK}}{{KC}} = \frac{1}{2} \Rightarrow \frac{{MK}}{{MC}} = \frac{1}{3}\).
Xét tam giác MSC có:
\(\frac{{MC}}{{MK}} + \frac{{MS}}{{MS}} = 2\frac{{MN}}{{MJ}}\)
\( \Rightarrow 3 + 1 = 2 \cdot \frac{{MN}}{{MJ}} \Rightarrow \frac{{MJ}}{{MN}} = \frac{1}{2}\)
Xét tam giác BNA có:
\(\frac{{BN}}{{BN}} + \frac{{BA}}{{BM}} = 2\frac{{BI}}{{BJ}}\)
\( \Rightarrow 1 + 2 = 2 \cdot \frac{{BI}}{{BJ}} \Rightarrow \frac{{IB}}{{BJ}} = \frac{3}{2} \Rightarrow \frac{{IB}}{{IJ}} = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.