Tìm cấp số cộng có 3 số hạng liên tiếp, biết tổng số của chúng là 15 và tổng bình phương các số hạng là 83.
Quảng cáo
Trả lời:
Lời giải
Gọi 3 số hạng2 lần lượt là x; x + d; x + 2d (với d là công sai của cấp số cộng).
Do tổng của chúng là 15 nên ta có:
x + x + d + x + 2d = 15
Û 3x + 3d = 15 Û x + d = 5
Û d = 5 – x.
Tổng các bình phương của chúng là 83 nên suy ra
x2 + (x + d)2 + (x + 2d)2 = 83
Û x2 + (x + 5 − x)2 + (x + 10 − 2x)2 = 83
Û x2 + 52 + (10 − x)2 = 83
Û x2 + 25 + 100 − 20x + x2 = 83
Û 2x2 − 20x + 42 = 0
Û x2 − 10x + 21 = 0
Û (x − 3)(x − 7) = 0
• TH1: Với x = 3, d = 2 thì 3 số hạng cần tìm là 3; 5; 7;
• TH2: Với x = 7, d = −2 thì 3 số hạng cần tìm là 7; 5; 3.
Vậy 3 số hạng liên tiếp cần tìm là 3; 5; 7 hoặc 7; 5; 3.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Do ABCD là hình bình hành nên ta có:
+) \(AB\;{\rm{//}}\;{\rm{CD}} \Rightarrow \widehat {ABD} = \widehat {BDC}\) (Hai góc ở vị trí so le trong).
\( \Rightarrow \widehat {KBO} = \widehat {HDO}\).
+) \(AD\;{\rm{//}}\;B{\rm{C}} \Rightarrow \widehat {DAC} = \widehat {ACB}\) (Hai góc ở vị trí so le trong).
\( \Rightarrow \widehat {EAO} = \widehat {FCO}\).
Xét ∆KOB và ∆HOD có:
\(\widehat {KBO} = \widehat {HDO}\) (cmt)
OB = OD (gt)
\(\widehat {KOB} = \widehat {HOD}\) (Hai góc đối đỉnh)
Þ ∆KOB = ∆HOD (g.c.g)
Þ OK = OH (Hai cạnh tương ứng bằng nhau) (1)
Xét ∆EOA và ∆FOC có:
\(\widehat {EAO} = \widehat {FCO}\) (cmt)
OA = OC (gt)
\(\widehat {EOA} = \widehat {FOC}\) (Hai góc đối đỉnh)
Þ ∆EOA = ∆FOC (g.c.g)
Þ OE = OF (Hai cạnh tương ứng bằng nhau) (2)
Từ (1) và (2) ta có tứ giác EKFH có hai cặp cạnh đối thỏa mãn OK = OH và OE = OF.
Suy ra EKFH là hình bình hành.
Lời giải
Lời giải
a) N là điểm chung của (ABN) và (SCD).
Mà AB // CD Þ (ABN) ∩ (SCD) = Nx // CD // AB.
b) Gọi E là trung điểm của CD
\( \Rightarrow DE = MB = \frac{1}{2}CD = \frac{1}{2}AB\).
Xét tam giác CSD có \(\frac{{EC}}{{CD}} = \frac{{CN}}{{SC}} = \frac{1}{2}\).
Áp dụng định lý Ta-lét đảo suy ra: EN // SD (1)
Ta thấy BM // DE và BM = DE suy ra DMBE là hình bình hành.
Þ BE // DM (2)
Từ (1) và (2) Þ (BNE) // (SDM)
Þ BN // (SDM)
c) Gọi O là tâm của hình bình hành ABCD.
Ta có O Î (SBD) Þ SO Ì (SBD)
Þ I = SO Ç AN là điểm cần tìm.
Gọi K là giao điểm của MC và BD
Þ K Î (SBD) Þ SK Ì (SBD)
Þ J = SK Ç MN là điểm cần tìm.
d) Xét tam giác SAC có I là giao điểm của hai đường trung tuyến là SO và AN nên I là trọng tâm của tam giác SAC
\( \Rightarrow \frac{{AI}}{{AN}} = \frac{2}{3}\)
Do MB // CD nên theo định lí Ta-lét ta có: \(\frac{{MB}}{{CD}} = \frac{{MK}}{{KC}} = \frac{1}{2} \Rightarrow \frac{{MK}}{{MC}} = \frac{1}{3}\).
Xét tam giác MSC có:
\(\frac{{MC}}{{MK}} + \frac{{MS}}{{MS}} = 2\frac{{MN}}{{MJ}}\)
\( \Rightarrow 3 + 1 = 2 \cdot \frac{{MN}}{{MJ}} \Rightarrow \frac{{MJ}}{{MN}} = \frac{1}{2}\)
Xét tam giác BNA có:
\(\frac{{BN}}{{BN}} + \frac{{BA}}{{BM}} = 2\frac{{BI}}{{BJ}}\)
\( \Rightarrow 1 + 2 = 2 \cdot \frac{{BI}}{{BJ}} \Rightarrow \frac{{IB}}{{BJ}} = \frac{3}{2} \Rightarrow \frac{{IB}}{{IJ}} = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.