Câu hỏi:

13/07/2024 1,834

Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm dân cư O. Phải mở một con đường thẳng đi qua O như thế nào để theo con đường đó, hai đoạn đường từ điểm O đến con đường a và b bằng nhau (các con đường đều là đường thẳng) (H.3.27)?

Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau bài học này ta giải quyết được bài toán như sau:

Gọi điểm giao nhau giữa hai đường thẳng a và b là điểm O

Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm (ảnh 2)

- Vẽ tia Ax đi qua điểm O. Trên tia Ax lấy điểm B sao cho OA = OB.

- Qua B vẽ tia By // Ab; Bz // Aa cắt hai tia Aa và Bb lần lượt tại hai điểm C và D

Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm (ảnh 3)

Khi đó, tứ giác ACBD là hình bình hành (vì AC // BD; AD // BC) có O là trung điểm AB nên O là trung điểm của CD.

Hai đoạn đường từ điểm O đến con đường a và b bằng nhau, tức là OC = OD.

Vậy con đường cần mở đường thẳng đi qua hai điểm C và D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. Chứng minh BF = DE.

Xem đáp án » 13/07/2024 34,978

Câu 2:

Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Một đường thẳng đi qua O lần lượt cắt các cạnh AB, CD của hình bình hành tại hai điểm M, N. Chứng minh ∆OAM = ∆OCN. Từ đó suy ra tứ giác MBND là hình bình hành.

Xem đáp án » 13/07/2024 28,940

Câu 3:

Tròn khẳng định: Hình thang cân có hai cạnh bên bằng nhau. Ngược lại, hình thang có hai cạnh bên bằng nhau thì nó là hình thang cân.

Vuông lại cho rằng: Tròn sai rồi!

Có trường hợp hình thang có hai cạnh bên bằng nhau nhưng nó lại là hình bình hành mà không phải là hình thang cân.

Theo em, bạn nào đúng? Vì sao?

Xem đáp án » 13/07/2024 27,629

Câu 4:

Tính các góc còn lại của hình bình hành ABCD trong Hình 3.35.

Tính các góc còn lại của hình bình hành ABCD trong Hình 3.35. (ảnh 1)

Xem đáp án » 13/07/2024 16,531

Câu 5:

Cho tam giác ABC. Từ một điểm M tùy ý trên cạnh BC, kẻ đường thẳng song song với AB, cắt cạnh AC tại N và kẻ đường thẳng song song với AC, cắt AB tại P. Gọi I là trung điểm của đoạn NP. Chứng minh rằng I cũng là trung điểm của đoạn thẳng AM.

Xem đáp án » 13/07/2024 15,838

Câu 6:

Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao?

Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao? (ảnh 1)

Xem đáp án » 13/07/2024 13,954

Câu 7:

c) Tứ giác có hai cạnh đối nào cũng song song là hình bình hành.

Xem đáp án » 13/07/2024 7,444
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay