Giải SBT Toán 8 KNTT Bài 11: Hình thang cân có đáp án
30 người thi tuần này 4.6 423 lượt thi 5 câu hỏi
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Trong hình thang ABCD có:
và là 2 góc bù nhau, và là 2 góc bù nhau.
Do đó ,
Mà nên , suy ra . Do đó
nên , hay , suy ra
Do đó
Vậy hình thang ABCD có
Lời giải
Xét hình thang ABCD có AB // CD
Ta có:
• và là hai góc kề với cạnh bên AD
Suy ra nên trong hai góc đó có có quá 1 góc tù
• và là hai góc kề với cạnh bên BC
Suy ra nên trong hai góc đó có có quá 1 góc tù
Do đó, trong bốn góc có nhiều nhất 2 góc là góc tù.
Lời giải
Do ∆ABC vuông cân tại đỉnh A nên
Xét trong ∆ABC ta có:
Nên
Do ∆BCD vuông cân tại đỉnh B nên
Xét trong ∆BCD ta có:
Nên
Ta có nên AB // CD (hai góc so le trong bằng nhau).
Vậy ABCD là một hình thang với AB, CD là hai đáy; cạnh bên của hình thang đó là AC vuông góc với đáy AB nên hình thang đó là hình thang vuông.
Lời giải
Do ABCD là hình thang cân nên AD = BC, AC = BD,
Xét ∆ABC và ∆BAD có
BC = AD, AC = BD, cạnh AB chung
Do đó ∆ABC = ∆BAD (c.c.c)
Suy ra .
Từ đó OAB là tam giác cân tại O, nên OA = OB.
Ta có: OA + OC = AC; OB + OD = BD, mà OA = OB, AC = BD
Suy ra OC = OD.
Do đó O cách đều A và B; O cách đều C và D;
Do AB // CD nên ; (các cặp góc ở vị trí đồng vị)
Mà hay suy ra
Suy ra SAB, SCD là các tam giác cân tại đỉnh S nên SA = SB, SC = SD
Do đó S cũng cách đều A và B, cách đều C và D.
Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.
Lời giải
Do CA là tia phân giác của nên
Mà ABCD là hình thang cân nên AB // CD, suy ra (hai góc so le trong)
Do đó, , suy ra ∆ABC cân tại B.
Đặt thì .
Vì ABCD là hình thang cân nên
Tam giác ADC vuông tại A nên suy ra
Lấy điểm M thuộc cạnh huyền DC sao cho DM = AD, mà thì AMD là tam giác đều, nên
Khi đó
Suy ra nên tam giác MAC cân tại M
Do đó AM = MC, mà AM = DM = AD
Nên AM = DM = AD = MC hay DC = 2AD.
Vậy AB = BC = AD, DC = 2AD nên chu vi hình thang bằng
AB + BC + CD + AD = 5AD = 5.2 = 10 cm.
85 Đánh giá
50%
40%
0%
0%
0%