Giải SBT Toán 8 KNTT Bài 34. Ba trường hợp đồng dạng của hai tam giác có đáp án
27 người thi tuần này 4.6 463 lượt thi 19 câu hỏi
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
(1) Vì \(\frac{2}{6} = \frac{3}{9} = \frac{4}{{12}}\) nên hai tam giác này đồng dạng với nhau theo trường hợp cạnh – cạnh – cạnh.
(2) Vì \(\frac{3}{6} = \frac{5}{{10}} \ne \frac{6}{{11}}\) nên hai tam giác này không đồng dạng với nhau.
(3) Vì \(\frac{2}{2} = \frac{3}{3} \ne \frac{3}{2}\) nên hai tam giác này không đồng dạng với nhau.
(4) Vì \(\frac{4}{3} = \frac{4}{3} = \frac{4}{3}\) nên hai tam giác này đồng dạng với nhau theo trường hợp cạnh – cạnh – cạnh.
Lời giải
Lời giải
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3}{4} = \frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{AB + AC}}{{DE + DF}} = \frac{{15 - BC}}{{20 - FE}}\)
Do đó,
4(15 – BC) = 3(20 – FE)
60 – 4BC = 60 – 3FE
4BC = 3FE
Suy ra \(\frac{{BC}}{{FE}} = \frac{3}{4}\).
Tam giác ABC và tam giác DEF có:
\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}}\left( { = \frac{3}{4}} \right)\).
Nên ∆ABC ᔕ ∆DEF (c.c.c).
Lời giải
Lời giải
Vì DE = 6 cm, DF = 4 cm, EF = 3 cm nên ta có: DE : DF : EF = 6 : 4 : 3.
Do đó \(\frac{{DE}}{6} = \frac{{DF}}{4} = \frac{{EF}}{3}\). Suy ra \(\frac{{2DE}}{{12}} = \frac{{3DF}}{{12}} = \frac{{4EF}}{{12}}\).
Suy ra 2DE = 3DF = 4EF.
Mà 2AB = 3AC = 4BC (gt)
Do đó, \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}}\).
Suy ra, ∆ABC ᔕ ∆DEF (c.c.c).
Lời giải
Lời giải
Vì OA = 3OM, OB = 3ON, OC = 3OP.
Nên \(\frac{{OA}}{{OM}} = 3;\frac{{OB}}{{ON}} = 3;\frac{{OC}}{{OP}} = 3\). Suy ra \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{{OC}}{{OP}} = 3\).
Tam giác OMN có: \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}}\).
Nên suy ra AB song song với MN (định lí Thalès đảo).
Do đó, \(\frac{{AB}}{{MN}} = \frac{{OA}}{{OM}} = 3\).
Chứng minh tương tự ta có: \(\frac{{AC}}{{MP}} = 3;\frac{{BC}}{{NP}} = 3\).
Tam giác ABC và tam giác MNP có:
\(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}} = \frac{{BC}}{{NP}} = 3\).
Do đó, ∆ABC ᔕ ∆MNP (c.c.c) với tỉ số đồng dạng 3.
Lời giải
Lời giải
Tam giác ABC có:
M, N lần lượt là trung điểm của BC, CA
Nên MN là đường trung bình của tam giác ABC.
Do đó, MN // AB và \(\frac{{AB}}{{MN}} = 2\).
Chứng minh tương tự ta có: \(\frac{{BC}}{{PN}} = 2\); \(\frac{{AC}}{{PM}} = 2\).
Tam giác ABC và tam giác MNP có:
\(\frac{{AB}}{{MN}} = \frac{{BC}}{{PN}} = \frac{{AC}}{{PM}}\) (= 2).
Nên ∆ABC ᔕ ∆MNP (c.c.c) theo tỉ số đồng dạng là 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
93 Đánh giá
50%
40%
0%
0%
0%