Câu hỏi:

11/07/2024 2,217

Cho tam giác ABC và hai điểm P, Q lần lượt nằm trên các tia đối của tia AB và AC sao cho \(\widehat {APQ} = \widehat {ACB}\). Chứng minh rằng:

a) AP . AB = AQ . AC.

b) ∆APC ∆AQB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a)

Xét tam giác APQ và tam giác ACB có:

\(\widehat {PAQ} = \widehat {BAC}\) (hai góc đối đỉnh)

\(\widehat {APQ} = \widehat {ACB}\) (giả thiết)

Do đó, ∆APQ ∆ACB (g.g) nên \(\frac{{AP}}{{AC}} = \frac{{AQ}}{{AB}}\).

Suy ra: AP . AB = AQ . AC.

b)

Vì \(\frac{{AP}}{{AC}} = \frac{{AQ}}{{AB}}\) nên \(\frac{{AP}}{{AQ}} = \frac{{AC}}{{AB}}\).

Xét tam giác APC và tam giác AQB có:

\(\widehat {PAC} = \widehat {BAQ}\) (hai góc đối đỉnh),

\(\frac{{AP}}{{AQ}} = \frac{{AC}}{{AB}}\) (chứng minh trên).

Do đó, ∆APC ∆AQB (c.g.c).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Tam giác ABC có:

M, N lần lượt là trung điểm của BC, CA

Nên MN là đường trung bình của tam giác ABC.

Do đó, MN // AB và \(\frac{{AB}}{{MN}} = 2\).

Chứng minh tương tự ta có: \(\frac{{BC}}{{PN}} = 2\); \(\frac{{AC}}{{PM}} = 2\).

Tam giác ABC và tam giác MNP có:

\(\frac{{AB}}{{MN}} = \frac{{BC}}{{PN}} = \frac{{AC}}{{PM}}\) (= 2).

Nên ∆ABC ∆MNP (c.c.c) theo tỉ số đồng dạng là 2.

Lời giải

Lời giải

Media VietJack

a)

Vì AM . AB = AN . AC nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\).

Tam giác AMN và tam giác ABC có:

\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\),

\(\widehat {BAC}\) chung.

Do đó, ∆AMN ∆ACB (c.g.c).

b)

Vì ∆AMN ∆ACB (cmt) nên \(\widehat {AMN} = \widehat C\) và \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}}\).

Mà E, F lần lượt là trung điểm của MN, BC nên MN = 2ME, BC = 2FC.

Do đó: \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{{2ME}}{{2FC}} = \frac{{ME}}{{FC}}\).

Tam giác MAE và tam giác CAF có:

\(\widehat {AME} = \widehat C\) (do \(\widehat {AMN} = \widehat C\));

\(\frac{{AM}}{{AC}} = \frac{{ME}}{{FC}}\) (cmt).

Do đó, ∆AME ∆ACF (c.g.c). Suy ra \(\widehat {EAM} = \widehat {FAC}\) (hai góc tương ứng).

Vậy \(\widehat {EAB} = \widehat {FAC}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay