Câu hỏi:

11/07/2024 2,410

Cho tam giác ABC và hai điểm M, N lần lượt nằm trên hai cạnh AB, AC sao cho MN song song với BC. Gọi ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC. Chứng minh rằng:

a) ∆MEN ∆BFC.

b) \(\frac{{AE}}{{AF}} = \frac{{MN}}{{BC}}\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a)

Vì MN song song với BC (gt) nên

\(\widehat {ENM} = \widehat C\) (hai góc đồng vị);

\(\widehat {AMN} = \widehat {ABC}\) (hai góc đồng vị).

Mà ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC nên \(\widehat {EMN} = \frac{1}{2}\widehat {AMN}\) và \(\widehat {FBC} = \frac{1}{2}\widehat {ABC}\). Do đó, \(\widehat {EMN} = \widehat {FBC}\).

Tam giác MEN và tam giác BFC có:

\(\widehat {ENM} = \widehat C\) (cmt)

\(\widehat {EMN} = \widehat {FBC}\) (cmt)

Do đó, tam giác MEN đồng dạng với tam giác BFC (g.g).

b)

Tam giác ABC có:

MN song song với BC

Nên theo hệ quả định lý Thalès ta có:

\(\frac{{MN}}{{BC}} = \frac{{AM}}{{AB}}\) (1).

Vì ME, BF lần lượt là phân giác của \(\widehat M\), \(\widehat B\) của tam giác AMN và tam giác ABC nên \(\widehat {EMA} = \frac{1}{2}\widehat {AMN} = \frac{1}{2}\widehat {ABC} = \widehat {FBA}\).

Do đó, \(\widehat {EMA} = \widehat {FBA}\) mà hai góc này ở vị trí đồng vị nên ME song song với BF.

Tam giác ABF có ME song song với BF nên theo hệ quả định lý Thalès ta có:

\(\frac{{AE}}{{AF}} = \frac{{AM}}{{AB}}\) (2).

Từ (1) và (2) ta có: \(\frac{{AE}}{{AF}} = \frac{{MN}}{{BC}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC và các điểm M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng ∆ABC ∆MNP và tìm tỉ số đồng dạng.

Xem đáp án » 11/07/2024 5,183

Câu 2:

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.

a) Chứng minh rằng ∆AMN ∆ACB.

b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\).

Xem đáp án » 11/07/2024 2,947

Câu 3:

Cho hình thang ABCD (AB // CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F.

a) Chứng minh rằng: ∆EAB ∆EDC, ∆FAB ∆FCD.

b) Lấy hai điểm M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, E, F thẳng hàng.

Xem đáp án » 11/07/2024 2,579

Câu 4:

Cho hai điểm M, N lần lượt nằm trên các cạnh AB, AC của tam giác ABC sao cho \(\widehat {ABN} = \widehat {ACM}\). Gọi O là giao điểm của BN và CM. Chứng minh rằng:

a) AM . AB = AN . AC.

b) OM . OC = ON . OB.

Xem đáp án » 11/07/2024 2,221

Câu 5:

Cho hai tam giác ABC và DEF lần lượt có chu vi là 15 cm và 20 cm. Biết rằng \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{3}{4}\). Chứng minh rằng ∆ABC ∆DEF.

Xem đáp án » 30/10/2023 2,041

Câu 6:

Cho tam giác ABC và điểm D trên cạnh AC sao cho \(\widehat {ABD} = \widehat {BCA}\). Chứng minh rằng: AB2 = AD . AC.

Xem đáp án » 11/07/2024 1,854

Bình luận


Bình luận