Câu hỏi:

11/07/2024 5,158

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.

a) Chứng minh rằng ∆AMN ∆ACB.

b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a)

Vì AM . AB = AN . AC nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\).

Tam giác AMN và tam giác ABC có:

\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\),

\(\widehat {BAC}\) chung.

Do đó, ∆AMN ∆ACB (c.g.c).

b)

Vì ∆AMN ∆ACB (cmt) nên \(\widehat {AMN} = \widehat C\) và \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}}\).

Mà E, F lần lượt là trung điểm của MN, BC nên MN = 2ME, BC = 2FC.

Do đó: \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{{2ME}}{{2FC}} = \frac{{ME}}{{FC}}\).

Tam giác MAE và tam giác CAF có:

\(\widehat {AME} = \widehat C\) (do \(\widehat {AMN} = \widehat C\));

\(\frac{{AM}}{{AC}} = \frac{{ME}}{{FC}}\) (cmt).

Do đó, ∆AME ∆ACF (c.g.c). Suy ra \(\widehat {EAM} = \widehat {FAC}\) (hai góc tương ứng).

Vậy \(\widehat {EAB} = \widehat {FAC}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Tam giác ABC có:

M, N lần lượt là trung điểm của BC, CA

Nên MN là đường trung bình của tam giác ABC.

Do đó, MN // AB và \(\frac{{AB}}{{MN}} = 2\).

Chứng minh tương tự ta có: \(\frac{{BC}}{{PN}} = 2\); \(\frac{{AC}}{{PM}} = 2\).

Tam giác ABC và tam giác MNP có:

\(\frac{{AB}}{{MN}} = \frac{{BC}}{{PN}} = \frac{{AC}}{{PM}}\) (= 2).

Nên ∆ABC ∆MNP (c.c.c) theo tỉ số đồng dạng là 2.

Lời giải

Lời giải

Media VietJack

a)

Vì AB song song với đáy CD của tam giác EDC nên ∆EAB ∆EDC.

Vì AB song song với đáy CD của tam giác FCD nên ∆FAB ∆FCD.

b)

Vì ∆EAB ∆EDC (cmt) nên \(\frac{{EA}}{{ED}} = \frac{{AB}}{{DC}} = \frac{{2AM}}{{2DN}} = \frac{{AM}}{{DN}}\) (do M, N lần lượt là trung điểm của AB, CD).

Tam giác EAM và tam giác EDN có:

\(\frac{{EA}}{{ED}} = \frac{{AM}}{{DN}}\) (cmt)

\(\widehat {EAM} = \widehat {EDN}\) (AM song song với DN, hai góc đồng vị)

Do đó, ∆EAM ∆EDN (c.g.c).

Suy ra \(\widehat {AEM} = \widehat {DEN}\).

Do đó, tia EM trùng với tia EN hay 3 điểm M, E, N thẳng hàng (1).

Vì ∆FAB ∆FCD nên \(\frac{{FA}}{{FC}} = \frac{{AB}}{{CD}} = \frac{{AM}}{{CN}}\).

Hai tam giác FAM và tam giác FCN có:

\(\frac{{FA}}{{FC}} = \frac{{AM}}{{CN}}\) (cmt)

\(\widehat {FAM} = \widehat {FCN}\) (AM song song với CN, hai góc so le trong)

Do đó, ∆FAM ∆FCN (c.g.c).

Nên \(\widehat {AFM} = \widehat {CFN}\)

Do đó, tia FM và tia FN là hai tia đối nhau.

Suy ra, F, M, N thẳng hàng (2).

Từ (1) và (2) ta có: 4 điểm M, E, F, N thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay