Câu hỏi:

11/07/2024 2,946

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.

a) Chứng minh rằng ∆AMN ∆ACB.

b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a)

Vì AM . AB = AN . AC nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\).

Tam giác AMN và tam giác ABC có:

\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\),

\(\widehat {BAC}\) chung.

Do đó, ∆AMN ∆ACB (c.g.c).

b)

Vì ∆AMN ∆ACB (cmt) nên \(\widehat {AMN} = \widehat C\) và \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}}\).

Mà E, F lần lượt là trung điểm của MN, BC nên MN = 2ME, BC = 2FC.

Do đó: \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{{2ME}}{{2FC}} = \frac{{ME}}{{FC}}\).

Tam giác MAE và tam giác CAF có:

\(\widehat {AME} = \widehat C\) (do \(\widehat {AMN} = \widehat C\));

\(\frac{{AM}}{{AC}} = \frac{{ME}}{{FC}}\) (cmt).

Do đó, ∆AME ∆ACF (c.g.c). Suy ra \(\widehat {EAM} = \widehat {FAC}\) (hai góc tương ứng).

Vậy \(\widehat {EAB} = \widehat {FAC}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC và các điểm M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng ∆ABC ∆MNP và tìm tỉ số đồng dạng.

Xem đáp án » 11/07/2024 5,183

Câu 2:

Cho hình thang ABCD (AB // CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F.

a) Chứng minh rằng: ∆EAB ∆EDC, ∆FAB ∆FCD.

b) Lấy hai điểm M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, E, F thẳng hàng.

Xem đáp án » 11/07/2024 2,579

Câu 3:

Cho tam giác ABC và hai điểm M, N lần lượt nằm trên hai cạnh AB, AC sao cho MN song song với BC. Gọi ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC. Chứng minh rằng:

a) ∆MEN ∆BFC.

b) \(\frac{{AE}}{{AF}} = \frac{{MN}}{{BC}}\).

Xem đáp án » 11/07/2024 2,410

Câu 4:

Cho hai điểm M, N lần lượt nằm trên các cạnh AB, AC của tam giác ABC sao cho \(\widehat {ABN} = \widehat {ACM}\). Gọi O là giao điểm của BN và CM. Chứng minh rằng:

a) AM . AB = AN . AC.

b) OM . OC = ON . OB.

Xem đáp án » 11/07/2024 2,221

Câu 5:

Cho hai tam giác ABC và DEF lần lượt có chu vi là 15 cm và 20 cm. Biết rằng \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{3}{4}\). Chứng minh rằng ∆ABC ∆DEF.

Xem đáp án » 30/10/2023 2,041

Câu 6:

Cho tam giác ABC và điểm D trên cạnh AC sao cho \(\widehat {ABD} = \widehat {BCA}\). Chứng minh rằng: AB2 = AD . AC.

Xem đáp án » 11/07/2024 1,854

Bình luận


Bình luận