Câu hỏi:

11/07/2024 2,578

Cho hình thang ABCD (AB // CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F.

a) Chứng minh rằng: ∆EAB ∆EDC, ∆FAB ∆FCD.

b) Lấy hai điểm M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, E, F thẳng hàng.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a)

Vì AB song song với đáy CD của tam giác EDC nên ∆EAB ∆EDC.

Vì AB song song với đáy CD của tam giác FCD nên ∆FAB ∆FCD.

b)

Vì ∆EAB ∆EDC (cmt) nên \(\frac{{EA}}{{ED}} = \frac{{AB}}{{DC}} = \frac{{2AM}}{{2DN}} = \frac{{AM}}{{DN}}\) (do M, N lần lượt là trung điểm của AB, CD).

Tam giác EAM và tam giác EDN có:

\(\frac{{EA}}{{ED}} = \frac{{AM}}{{DN}}\) (cmt)

\(\widehat {EAM} = \widehat {EDN}\) (AM song song với DN, hai góc đồng vị)

Do đó, ∆EAM ∆EDN (c.g.c).

Suy ra \(\widehat {AEM} = \widehat {DEN}\).

Do đó, tia EM trùng với tia EN hay 3 điểm M, E, N thẳng hàng (1).

Vì ∆FAB ∆FCD nên \(\frac{{FA}}{{FC}} = \frac{{AB}}{{CD}} = \frac{{AM}}{{CN}}\).

Hai tam giác FAM và tam giác FCN có:

\(\frac{{FA}}{{FC}} = \frac{{AM}}{{CN}}\) (cmt)

\(\widehat {FAM} = \widehat {FCN}\) (AM song song với CN, hai góc so le trong)

Do đó, ∆FAM ∆FCN (c.g.c).

Nên \(\widehat {AFM} = \widehat {CFN}\)

Do đó, tia FM và tia FN là hai tia đối nhau.

Suy ra, F, M, N thẳng hàng (2).

Từ (1) và (2) ta có: 4 điểm M, E, F, N thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC và các điểm M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng ∆ABC ∆MNP và tìm tỉ số đồng dạng.

Xem đáp án » 11/07/2024 5,183

Câu 2:

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.

a) Chứng minh rằng ∆AMN ∆ACB.

b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\).

Xem đáp án » 11/07/2024 2,946

Câu 3:

Cho tam giác ABC và hai điểm M, N lần lượt nằm trên hai cạnh AB, AC sao cho MN song song với BC. Gọi ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC. Chứng minh rằng:

a) ∆MEN ∆BFC.

b) \(\frac{{AE}}{{AF}} = \frac{{MN}}{{BC}}\).

Xem đáp án » 11/07/2024 2,410

Câu 4:

Cho hai điểm M, N lần lượt nằm trên các cạnh AB, AC của tam giác ABC sao cho \(\widehat {ABN} = \widehat {ACM}\). Gọi O là giao điểm của BN và CM. Chứng minh rằng:

a) AM . AB = AN . AC.

b) OM . OC = ON . OB.

Xem đáp án » 11/07/2024 2,221

Câu 5:

Cho hai tam giác ABC và DEF lần lượt có chu vi là 15 cm và 20 cm. Biết rằng \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{3}{4}\). Chứng minh rằng ∆ABC ∆DEF.

Xem đáp án » 30/10/2023 2,041

Câu 6:

Cho tam giác ABC và điểm D trên cạnh AC sao cho \(\widehat {ABD} = \widehat {BCA}\). Chứng minh rằng: AB2 = AD . AC.

Xem đáp án » 11/07/2024 1,854

Bình luận


Bình luận