Câu hỏi:
11/07/2024 2,578Cho hình thang ABCD (AB // CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F.
a) Chứng minh rằng: ∆EAB ᔕ ∆EDC, ∆FAB ᔕ ∆FCD.
b) Lấy hai điểm M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, E, F thẳng hàng.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a)
Vì AB song song với đáy CD của tam giác EDC nên ∆EAB ᔕ ∆EDC.
Vì AB song song với đáy CD của tam giác FCD nên ∆FAB ᔕ ∆FCD.
b)
Vì ∆EAB ᔕ ∆EDC (cmt) nên \(\frac{{EA}}{{ED}} = \frac{{AB}}{{DC}} = \frac{{2AM}}{{2DN}} = \frac{{AM}}{{DN}}\) (do M, N lần lượt là trung điểm của AB, CD).
Tam giác EAM và tam giác EDN có:
\(\frac{{EA}}{{ED}} = \frac{{AM}}{{DN}}\) (cmt)
\(\widehat {EAM} = \widehat {EDN}\) (AM song song với DN, hai góc đồng vị)
Do đó, ∆EAM ᔕ ∆EDN (c.g.c).
Suy ra \(\widehat {AEM} = \widehat {DEN}\).
Do đó, tia EM trùng với tia EN hay 3 điểm M, E, N thẳng hàng (1).
Vì ∆FAB ᔕ ∆FCD nên \(\frac{{FA}}{{FC}} = \frac{{AB}}{{CD}} = \frac{{AM}}{{CN}}\).
Hai tam giác FAM và tam giác FCN có:
\(\frac{{FA}}{{FC}} = \frac{{AM}}{{CN}}\) (cmt)
\(\widehat {FAM} = \widehat {FCN}\) (AM song song với CN, hai góc so le trong)
Do đó, ∆FAM ᔕ ∆FCN (c.g.c).
Nên \(\widehat {AFM} = \widehat {CFN}\)
Do đó, tia FM và tia FN là hai tia đối nhau.
Suy ra, F, M, N thẳng hàng (2).
Từ (1) và (2) ta có: 4 điểm M, E, F, N thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.
a) Chứng minh rằng ∆AMN ᔕ ∆ACB.
b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\).
Câu 3:
Cho tam giác ABC và hai điểm M, N lần lượt nằm trên hai cạnh AB, AC sao cho MN song song với BC. Gọi ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC. Chứng minh rằng:
a) ∆MEN ᔕ ∆BFC.
b) \(\frac{{AE}}{{AF}} = \frac{{MN}}{{BC}}\).
Câu 4:
Cho hai điểm M, N lần lượt nằm trên các cạnh AB, AC của tam giác ABC sao cho \(\widehat {ABN} = \widehat {ACM}\). Gọi O là giao điểm của BN và CM. Chứng minh rằng:
a) AM . AB = AN . AC.
b) OM . OC = ON . OB.
Câu 5:
Câu 6:
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 2)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Đề kiểm tra Cuối kì 1 Toán 8 CTST có đáp án (Đề 1)
về câu hỏi!