Giải SGK Toán 8 KNTT Bài 35. Định lí Pythagore và ứng dụng có đáp án

59 người thi tuần này 4.6 762 lượt thi 17 câu hỏi

🔥 Đề thi HOT:

1884 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.3 K lượt thi 19 câu hỏi
857 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.6 K lượt thi 15 câu hỏi
754 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
593 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Bạn Lan vẽ một hình chữ nhật với chiều rộng và chiều dài lần lượt là 1; 3 (đơn vị độ dài). Sau đó Lan đặt lên trục số đoạn OM có độ dài bằng độ dài của đường chéo hình chữ nhật vừa vẽ (trục số nằm ngang và M nằm bên phải gốc O). Hỏi điểm M biểu diễn số thực nào? Biết rằng đơn vị độ dài trên trục số và đơn vị độ dài đo kích thước hình chữ nhật là như nhau.

Lời giải

Bạn Lan vẽ một hình chữ nhật với chiều rộng và chiều dài lần lượt là 1; 3 (đơn vị độ dài). Sau đó Lan đặt lên trục (ảnh 1)

Để biết được điểm M biểu diễn số thực nào, ta cần tính độ dài đoạn thẳng OM, hay chính là tính độ dài đường chéo OB của hình chữ nhật OABC khi biết chiều dài và chiều rộng của hình chữ nhật đó, điều này dẫn đến việc cần tính độ dài cạnh huyền của tam giác vuông khi biết độ dài hai cạnh góc vuông. Để làm được điều này, ta sẽ sử dụng kiến thức của bài học hôm nay.

Câu 2

Cho tam giác vuông ABC có hai cạnh góc vuông AB = 3 cm, AC = 4 cm (H.9.31). Hãy đo độ dài cạnh BC và so sánh hai đại lượng AB2 + AC2 với BC2.

Cho tam giác vuông ABC có hai cạnh góc vuông AB = 3 cm, AC = 4 cm (H.9.31). Hãy đo độ dài cạnh BC (ảnh 1)

Lời giải

+ Đo độ dài BC ta được BC = 5 cm, vậy BC2 = 25.

+ Ta có AB2 = 32 = 9; AC2 = 42 = 16. Vậy AB2 + AC2 = 25.

Vậy AB2 + AC2 = BC2.

Câu 3

Lấy giấy trắng cắt bốn tam giác vuông bằng nhau. Gọi a, b là độ dài hai cạnh góc vuông, c là độ dài cạnh huyền của các tam giác vuông này. Cắt một hình vuông bằng tấm bìa có cạnh dài a + b. Dán bốn tam giác vuông lên tấm bìa như Hình 9.32.

- Dùng ê ke kiểm tra phần bìa không bị che lấp có phải là hình vuông cạnh bằng c không. Từ đó tính diện tích phần bìa này theo c.

- Tổng diện tích bốn tam giác vuông có độ dài hai cạnh góc vuông a, b là bao nhiêu?

- Diện tích cả tấm bìa hình vuông cạnh a + b bằng bao nhiêu?

- So sánh c2 + 2ab với (a + b)2 để rút ra nhận xét về mối quan hệ giữa hai đại lượng c2 và a2 + b2.

Lấy giấy trắng cắt bốn tam giác vuông bằng nhau. Gọi a, b là độ dài hai cạnh góc vuông, c là độ dài cạnh huyền của các tam (ảnh 1)

Lời giải

+ Phần bìa bị che lấp là hình vuông cạnh c. Diện tích của hình vuông là c2.

+ Tổng diện tích bốn tam giác vuông: 4.12.a.b = 2ab.

+ Diện tích tấm bìa hình vuông có cạnh bằng a + b là: (a + b)2.

+ Khi đó (a + b)2 = c2 + 2ab, tức là a2 + 2ab + b2 = c2 + 2ab. Suy ra c2 = a2 + b2.

Câu 4

Tìm độ dài x và y trong Hình 9.34

Tìm độ dài x và y trong Hình 9.34 (ảnh 1)

Lời giải

+ Theo định lí Pythagore ta có: x2 = 12 + 12 = 2. Suy ra x=2.

+ Theo định lí Pythagore ta có: 5 = 12 + y2. Suy ra y2 = 5 – 1 = 4. Suy ra y = 2.

Câu 5

Trên giấy kẻ ô vuông (cạnh ô vuông bằng 1 cm), cho các điểm A, B, C như Hình 9.35. Tính độ dài các cạnh của tam giác ABC.

Trên giấy kẻ ô vuông (cạnh ô vuông bằng 1 cm), cho các điểm A, B, C như Hình 9.35. Tính độ dài các cạnh của tam giác ABC. (ảnh 1)

Lời giải

Trên giấy kẻ ô vuông (cạnh ô vuông bằng 1 cm), cho các điểm A, B, C như Hình 9.35. Tính độ dài các cạnh của tam giác ABC. (ảnh 2)

Từ A kẻ AM sao cho AM  MB như hình vẽ trên.

Từ C kẻ CN sao cho CN  NB như hình vẽ trên.

Từ C kẻ EC sao cho EC EA như hình vẽ trên.

- Xét ΔAMB có AM  MB 

Suy ra ΔAMB là tam giác vuông tại M.

Ta có: AB2 = AM2 + MB2 (định lí Pythagore).

Khi đó AB2 = 22 + 32 = 13. Suy ra AB = 13 cm.

- Xét ΔBNC có CN  NB

Suy ra ΔBNC là tam giác vuông tại N.

Ta có: BC2 = NB2 + NC2 (định lí Pythagore).

Khi đó BC2 = 32 + 12 = 10. Suy ra BC = 10 cm.

- Xét ΔAEC có EC EA.

Suy ra ΔAEC là tam giác vuông tại E

Ta có: AC2 = AE2 + EC2 (định lí Pythagore).

Khi đó AC2 = 12 + 22 = 5. Suy ra AC = 5 cm.

Câu 6

Em hãy giải bài toán mở đầu.

Bạn Lan vẽ một hình chữ nhật với chiều rộng và chiều dài lần lượt là 1; 3 (đơn vị đo độ dài). Sau đó Lan đặt lên trục số đoạn OM có độ dài bằng độ dài đường chéo hình chữ nhật vừa vẽ (trục số nằm ngang và M nằm bên phải gốc O). Hỏi điểm M biểu diễn số thực nào? Biết rằng đơn vị độ dài đo kích thước hình chữ nhật là như nhau.

Lời giải

Nếu điểm M biểu diễn cho số thực x thì đoạn thẳng OM có độ dài x (đơn vị độ dài).

Đoạn thẳng OM là cạnh huyền của một tam giác vuông với hai cạnh góc vuông là hai cạnh của hình chữ nhật.Theo định lí Pythagore ta có x2 = 12 + 32 = 10. Suy ra x=10.

Vậy điểm M biểu diễn số thực 10.

Câu 7

Cho tam giác vuông với kích thước như Hình 9.37. Hãy tính độ dài x và cho biết những tam giác nào đồng dạng, viết đúng kí hiệu đồng dạng.

Cho tam giác vuông với kích thước như Hình 9.37. Hãy tính độ dài x và cho biết những tam giác nào đồng dạng, viết đúng kí hiệu đồng dạng. (ảnh 1)

Lời giải

Tam giác ABC vuông tại A nên theo định lí Pythagore ta có: AB2 + AC2 = BC2.

Hay x2 + 122 = 132. Suy ra x2 =132 – 122 = 25. Suy ra x = 5.

Vậy ∆ABC = EDF (cạnh huyền – cạnh góc vuông).

Khi đó ∆ABC EDF. (1)

Lại có ABMP=ACMN=2;  BAC^=NMP^=90°.

Do đó: ∆ABC MPN (c.g.c). (2)

Từ (1) và (2) suy ra MPN EDF.

Câu 8

Để đón được một người khách, một xe taxi xuất phát từ vị trí điểm A, chạy dọc một con phố dài 3 km đến điểm B thì rẽ vuông góc sang trái, chạy được 3 km đến điểm C thì tài xế cho xe rẽ vuông góc sang phải, chạy 1 km nữa thì gặp người khách tại điểm D (H.9.38). Hỏi lúc đầu, khoảng cách từ chỗ người lái xe đến người khách là bao nhiêu kilômét?

Để đón được một người khách, một xe taxi xuất phát từ vị trí điểm A, chạy dọc một con phố dài 3 km đến (ảnh 1)

Lời giải

BC = AM = AB = CM = 3 km (do AMCB là hình vuông).

Suy ra MD = CM + CD = 3 + 1 = 4 (km).

Xét tam giác AMD vuông tại M, theo định lí Pythagore, ta có:

AD2 = AM2 + MD2 = 32 + 42 = 25. Suy ra AD = 5 km.

Vậy lúc đầu, khoảng cách từ chỗ người lái xe đến người khách là 5 km.

Câu 9

Cho Hình 9.40, trong các đoạn thẳng AC, AD, AE đoạn nào có độ dài lớn nhất, đoạn nào có độ dài nhỏ nhất?

Cho Hình 9.40, trong các đoạn thẳng AC, AD, AE đoạn nào có độ dài lớn nhất, đoạn nào có độ dài nhỏ nhất? (ảnh 1)

Lời giải

Áp dụng định lí Pythagore trong tam giác AHD vuông tại H có: 

AD2 = AH2 + HD2 (1)

Áp dụng định lí Pythagore trong tam giác AHC vuông tại H có:

 AC2 = AH2 + HC2 (2)

Áp dụng định lí Pythagore trong tam giác AHE vuông tại H có:

 AE2 = AH2 + HE2 (3)

Vì HE > HC > HD suy ra HE2 > HC2 > HD2. (4)

Từ (1), (2), (3), (4) suy ra: AE2 > AC2 > AD2 AE > AC > AD.

Vậy đoạn AE là lớn nhất, đoạn AD là nhỏ nhất.

Câu 10

Trước đây chúng ta thừa nhận định lí về trường hợp bằng nhau đặc biệt của hai tam giác vuông: Nếu một cạnh góc vuông và cạnh huyền của tam giác vuông này bằng một cạnh góc vuông và cạnh huyền của tam giác vuông kia thì hai tam giác vuông đó bằng nhau”. Áp dụng định lí Pythagore, em hãy chứng minh định lí trên.

Trước đây chúng ta thừa nhận định lí về trường hợp bằng nhau đặc biệt của hai tam giác vuông: “Nếu một cạnh góc vuông  (ảnh 1)

Lời giải

- Xét tam giác ABC vuông tại A, có

BC2 = AB2 + AC2 (định lí Pythagore) (1)

- Xét tam giác A'B'C' vuông tại A' có:

B′C′2 = A′B′2 + A′C′2 (định lí Pythagore) (2)

Mà AB = A′B′BC = B′C′ (3)

Từ (1), (2), (3) suy ra AC = A′C′.

Suy ra hai tam giác đã cho bằng nhau theo trường hợp cạnh – cạnh – cạnh.

Câu 11

Tính chiều cao theo đơn vị centimét của một tam giác đều cạnh 2 cm (H.9.42) (làm tròn kết quả đến chữ số thập phân thứ hai).

Tính chiều cao theo đơn vị centimét của một tam giác đều cạnh 2 cm (H.9.42) (làm tròn kết quả đến chữ số thập phân thứ hai). (ảnh 1)

Lời giải

Vì tam giác ABC là tam giác đều, AH BC nên H là trung điểm của BC, suy ra

HB = HC = BC2=22=1 (cm).

Áp đụng định lí Pythagore trong tam giác vuông AHC ta có:

AC2 = AH2 + HC2 AH2 = AC2 − HC2 = 22 − 12 = 3 AH = 3 ≈ 1,73 (cm).

Vậy chiều cao của tam giác đều khoảng 1,73 cm.

Câu 12

Cho tam giác ABC vuông tại A. Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai ?

a) AB2 + BC2 = AC2.

b) BC2 − AC2 = AB2.

c) AC2 + BC2 = AB2.

d) BC2 − AB2 = AC2.

Lời giải

Tam giác ABC vuông tại A thì BC là cạnh huyền.

Khi đó, theo định lí Pythagore, ta có BC2 = AB2 + AC2, suy ra BC2 – AC2 = AB2 hay BC2 − AB2 = AC2.

Do đó b) và d) là khẳng định đúng; a) và c) là khẳng định sai.

Câu 13

Những bộ ba số đo nào dưới đây là độ dài ba cạnh của một tam giác vuông?

a) 1 cm, 1 cm, 2 cm.

b) 2 cm, 4 cm, 20 cm.

c) 5 cm, 4 cm, 3 cm.

d) 2 cm, 2 cm, 22 cm.

Lời giải

Do 1 + 1 = 2 và 2 + 4 = 6 < 20 nên các bộ ba trong a) , b) đều không thỏa mãn bất đẳng thức tam giác nên không thể là độ dài ba cạnh của một tam giác.

Vì 52 = 32 + 42222=22+22 nên các bộ ba trong c), d) là độ dài ba cạnh của tam giác vuông (theo định lí Pythagore đảo).

Câu 14

Tính độ dài x, y, z, t trong Hình 9.43.

Tính độ dài x, y, z, t trong Hình 9.43. (ảnh 1)

Lời giải

Các tam giác trong Hình 9.43 đều là các tam giác vuông nên ta áp dụng định lí Pythagore.

+) x2 = 42 + 22 = 20. Suy ra x = 25.

+) 52 = 42 + y2 nên y2 = 52 − 42 = 9. Suy ra y = 3.

+) z2 = 52+252= 25. Suy ra z = 5.

+) t2 = 12 + 22 = 5. Suy ra t = 5.

Câu 15

Cho tam giác ABC cân tại đỉnh A, chiều cao AH = 3 cm và cạnh đáy BC = 10 cm. Hãy tính độ dài các cạnh bên AB, AC.

Lời giải

Cho tam giác ABC cân tại đỉnh A, chiều cao AH = 3 cm và cạnh đáy BC = 10 cm. Hãy tính độ dài các cạnh bên AB, AC. (ảnh 1)

Vì tam giác ABC cân tại A có đường cao AH nên AH cũng là đường trung tuyến hay H là trung điểm BC. Suy ra HB = HC = BC : 2 = 10 : 2 = 5 cm.

Xét tam giác AHB vuông tại H, theo định lí Pythagore ta có

AB2 = AH2 + HB2 = 32 + 52 = 34.

Suy ra AB = 34 cm.

Do tam giác ABC cân tại A nên AC = AB = 34 cm.

Câu 16

Hãy tính diện tích của một hình chữ nhật có chiều rộng 8 cm và đường chéo dài 17 cm.

Lời giải

Hãy tính diện tích của một hình chữ nhật có chiều rộng 8 cm và đường chéo dài 17 cm. (ảnh 1)

Áp dụng định lí Pythagore cho tam giác ABC vuông tại B ta có: AB2 + BC2 = AC2.

Suy ra BC2 = AC2 – AB2 = 172 – 82 = 225.

Do đó, BC = 15 (cm).

Diện tích của hình chữ nhật là: AB . BC = 8 . 15 = 120 (cm2).

Câu 17

Chú cún bị xích bởi một sợi dây dài 6 m để canh một mảnh vườn giới hạn bởi các điểm A, B, E, F, D trong hình vuông ABCD có cạnh 5 m như Hình 9.44. Đầu xích buộc cố định tại điểm A của mảnh vườn. Hỏi chú cún có thể chạy đến tất cả các điểm của mảnh vườn mình phải canh không?

Chú cún bị xích bởi một sợi dây dài 6 m để canh một mảnh vườn giới hạn bởi các điểm A, B, E, F, D trong hình vuông (ảnh 1)

Lời giải

- Áp dụng định lí Pythagore cho tam giác ABE vuông tại B, có 

 AE2 = AB2 + BE2 = 52 + 32 = 34.

Suy ra AE = 34 m < 6 m.

Suy ra chú cún có thể chạy đến điểm E do khoảng cách AE ngắn hơn sợi dây.

- Áp dụng định lí Pythagore cho tam giác ADF vuông tại D, có 

 AF2 = AD2 + DF2 = 52 + 42 = 41.

Suy ra AE = 41 m > 6 m.

Suy ra chú cún không thể chạy đến điểm F do khoảng cách AF dài hơn sợi dây.

- Áp dụng định lí Pythagore cho tam giác ADC vuông tại D, có 

 AC2 = AD2 + DC2 = 52 + 52 = 50.

Suy ra AE = 52 m > 6 m.

Suy ra chú cún không thể chạy đến điểm C do khoảng cách AC dài hơn sợi dây.

Vậy chú cún không thể chạy hết tất cả các điểm của mảnh vườn. Chú chó chỉ có thể chạy đến điểm B, D, E.

4.6

152 Đánh giá

50%

40%

0%

0%

0%